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Diversification in a stock portfolio, no correlations
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» empirical distribution of normalized returns (400 stocks)
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Diversification in a stock portfolio, no correlations
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» empirical distribution of normalized returns (400 stocks)

» portfolio: superposition of stocks
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Diversification in a stock portfolio, no correlations

400 single stocks 40 portfolios, 10 stocks each
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» empirical distribution of normalized returns (400 stocks)
» portfolio: superposition of stocks

» risk reduction by diversification (no correlations yet!):
returns are more normally distributed,
market risk reduced by approx. 50 percent
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Correlations

correlation to market
investment value
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index of stock troding days

» stocks highly correlated to overall market

» risk reduction by diversification (with correlations):
unsystematic risk can be removed,
systematic risk (overall market) remains
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Market risk versus Credit risk

What's different for credits?
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Zero-coupon bond

t=T Creditor Obligor

t=0 | Creditor Obligor

» principal: borrowed amount

» face value F:
borrowed amount + interest + risk compensation

» credit contract with simplest cash-flow
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Defaults and Losses

» default occurs if the obligor fails to repay

= loss between 0 and face value F
» possible losses have to be priced into credit contract

> correlations are important to evaluate the risk of a credit
portfolio
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Introduction
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Defaults and Losses

» default occurs if the obligor fails to repay

= loss between 0 and face value F
» possible losses have to be priced into credit contract

> correlations are important to evaluate the risk of a credit
portfolio

» statistical modeling needed

» reduced form models versus structural models
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Reduced form models

» macroscopic approach

» different aspects (observables) are modelled independently

» default events as point process
» recovery rates modelled independently
» correlations e.g. as network model
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Reduced form models

» macroscopic approach

v

different aspects (observables) are modelled independently
» default events as point process
> recovery rates modelled independently
» correlations e.g. as network model

v

goal: describe empirical statistical properties and market
prices for credit products by callibrating with credit products

v

problem: the market may be wrong!
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Structural models
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» microscopic approach

» dynamical description of risk factors Vi (t), k=1,..., K
» default occurs if asset value Vi (T) falls below face value Fy
» then the (normalized) loss is Ly = %:(T)
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Structural models

(U]

W(T)

7(0)

T t

» microscopic approach

v

dynamical description of risk factors Vi(t), k=1,..., K

v

default occurs if asset value Vi (T) falls below face value Fy
Fi=Vi(T)
Fi

v

then the (normalized) loss is Ly =

v

e.g. credits with stock portfolio or houses as securities
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A model with jumps and correlations

dV
Tk = prdt + orevdt + dJy
k

Geometric Brownian motion with
> deterministic term gy dt
» diffusion term O'kEk\/CG
> jump term dJi, governed by a Poisson process

> K risk elements Vi = Vi (t), k=1,....K
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Jump process and return distribution

"~ Jump with a magnitude of. 65%
No Jump

V()

jumps yield heavy tails in the price and return distributions
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Jumps as Poisson process

v

we model jumps by Poisson process with intensity A

v

probability for n jumps between 0 and t:

po(t) = A exp(- 1)

v

largest negative jump: -100% of V/(t)

» we choose shifted log-normal distribution for jump size A

In(A+ 1) ~ N(suy + 1,0)
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Correlate K risk elements: one-factor model

v

€k is random variable for company k

» 7 is common random variable within one branch

v

correlated diffusion, uncorrelated jumps:

dV
Tkzﬂkdt+ (\/I—C&‘k—‘r\/z??)(fk\/dt-i-d./k
k

add influence of market as a whole

av,
S = de + (\/1 e+ ﬁn> oVt + dJy +
k

v
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Loss distribution
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Individual losses

V()

W(T)

7(0)

T t

» normalized loss: Ly = %:(T)

Fi
» default probability: Ppx = [ pi(Vi(T))dVi(T)
0

» truncate distribution px(Vi(T)) — pr(Lk)
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Loss distribution
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Default event

» default indicator

L1 i Vi(T) < Fi (default)
KTUL 0, if Vi(T)> Fe  (no default)

» indicator distribution

Pe(lk) = (1 — PD,k)(;(lk) + PD,k(s(Ik -1)
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Portfolio loss distribution

» portfolio loss: L — klk

|Mx

» loss distribution

+oo +o0

1
p(L) = / dhpy(h) - / dlicBr (k) / dLipr(L1)- / oL cpr(Lk)
—00 —00 1 p 0
5<L—KZLka>
k=1

» special case K =1 yields: p(L) = (1 — Pp 1) (L) + Ppipi(L)
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Loss distribution
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Large portfolios

Real portfolios comprise several hundred or more
individual contracts — K is large.

Central Limit Theorem: For very large K, portfolio
loss distribution p(L) must become Gaussian.

Question: how large is “very large” 7
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Distribution of credit losses

Frequency

V()

Unexpected loss

W)

0),

Expected loss o-quantile  Loss in %
of exposure

T t Economic capital

v

portfolio loss is arithmetic mean of individual losses

v

mean of loss distribution is called expected loss (EL)

v

standard deviation is called unexpected loss (UL)

v

kurtosis excess (KE) to measure heavy tails: 72 = pa/p3 — 3
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Simplified model — no jumps, no correlations

2000 ; , ,
» homogenous portfolio ok Koo
» analytical approximations 5 vooak o ]
» check Monte-Carlo results ok ]

sose o 202 ooes  oom

p(L)

0.000 0.002 0.004 0.006
L
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Loss distribution
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Simplified model — no jumps, no correlations
» homogenous portfolio ook Koo
K=100
» analytical approximations S ook ]
» check Monte-Carlo results ok ]
> slow convergence to of ‘ ‘

Gaussian for large portfolio
» K = 1000 not yet Gaussian
CLT-limit
> kurtosis excess of

uncorrelated portfolios
scales as 1/K

p(L)

0.000 0.002 0.004 0.006
L
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Numerical simulations
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Numerical simulations: influence of jumps, no correlations

K=1000

» diffusion and jumps compete 400 k=100

» KE has maximum, but
scales as 1/K ook

0 1 n 1
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L

1000.0F T T
F K=1000

1000
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L L
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Numerical simulations
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Numerical simulations: influence of correlations, no jumps

3000' T T T
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» transition from uncorrelated soof E
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Numerical simulations
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Numerical simulations: influence of correlations, no jumps

3000' T T T
2500k K=1000
» standard deviation decreases 2000f k=100 4
. . 2 1500f 3
» bad measure for credit risk! =k
1000 3
» diversification does not soof ]
reduce the risk o.?moo 0.0;05 00010  0.0015  0.0020
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Numerical simulations
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Numerical simulations: influence of correlations, no jumps

2000 T T T
L K=1000
. .. 1500
» correlation coefficient i k=100
c = 0 2 2 1000 b
» transition from uncorrelated soop ]
to fu”y Correlated O.?)OOO 0.02)05 0,0:NO 0,0;15 0.0020
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Numerical simulations
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Numerical simulations: jumps and correlations

v

correlated jump-diffusion

> one_branCh Correlatlons 0.000 O,(;UW 0.002 0.003 0.004 0.005
L
» c=05
. . . . 1000.0
» tail behavior stays similar :
with increasing K 10

p(L)
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Random matrix approach
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Random matrix approach
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Quantum Chaos

statistical nuclear physics

universal in a huge variety

of systems: nuclei, atoms,

e molecules, disordered systems,
lattice gauge quantum
chromodynamics, elasticity,
electrodynamics

“second ergodicity”: spectral average = ensemble average

—  random matrix theory
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Random matrix approach
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Price distribution at maturity
Brownian motion, V = (V41(T),..., Vk(T)), price distribution

() 1 L i -
PV E) = e s e (Vi - uT))

covariance matrix ¥ = c WW1o with fixed o = diag (o1, ...,0k)

assume Gaussian distributed correlation matrix WW/1
with W rectangular real K x N, variance 1/N

v N
pleom (W) = 5. eXP (—2tr Wt W)

average correlation is zero
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Random matrix approach
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Average price distribution

() N 8w [N 2 . N
= U — 2 —— _ _
PN =\ 5T TN T RE\NT

with hyperradius p =

easily transferred to geometric Brownian motion
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Random matrix approach
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Heavy tailed average distribution

K =50 and N = K, 2K, 5K, 30K

N smaller ——  stronger correlated ——  heavier tails
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Random matrix approach
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Loss distribution — varying correlation strength

integrate out risk elements, semi—analytical result

0.000 0.002 0.004 0.006 0.008 0,010

homogeneous portfolio K =10 and N = K, 2K, 10K, 30K

also here: stronger correlated —  heavier tails
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Random matrix approach
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Loss distribution — varying portfilio sizes
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homogeneous portfolios K = 50, 100, strongly correlated N = K

heavy tails robust !
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General conclusions

» correlated jumps lead to extremely fat-tailed distribution
» kurtosis excess (KE) scales as 1/K for uncorrelated portfolios

» KE does not scale down well for correlated portfolios, even for
low correlation coefficients

» correlations of stocks to market movement typically between
0.4 and 0.6

> other scenarios: houses, cars, etc as security for credits
» ensemble average reveals generic features of loss distributions

» lower bound, because average correlation is zero
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Conclusions in view of the present credit crisis

» credit contracts with high default probability,
e.g. houses as securities

» credit institutes resold the risk of credit portfolios,
grouped by credit rating

> lower ratings = higher risk and higher potential return

» problems:

> rating agencies rated way too high
» effect of correlations underestimated
» benefit of diversification overestimated
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R. Schifer, M. Sjélin, A. Sundin, M. Wolanski and T. Guhr,
Credit Risk - A Structural Model with Jumps and Correlations,
Physica A383 (2007) 533

M.C. Minnix, R. Schafer and T. Guhr,

A Random Matrix Approach to Credit Risk,
arXiv:1102.3900

both ranked for several months among the top—ten new credit risk
papers on www.defaultrisk.com
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