Entanglement and random quantum states

Marko Žnidarič

Department of Physics Faculty of Mathematics and Physics University of Ljubljana, Slovenia

Maribor, July 2008

(日)

ъ

- 2 Entanglement of random pure states
- Generating random pure states
- Practicality of entanglement detection

< ロ > < 同 > < 三 >

5 Role of generic initial states

Quantum information

Quantum feats :

- Quantum secure communication (no entanglement required, just no cloning)
- Teleportation (entanglement needed, e.g., EPR state)
- Quantum computation

(sufficient entanglement necessary (but not sufficient), else efficient classical simulation possible)

Hilbert space

Hilbert space

$$\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B$$

Usually we talk about qubits as basic units:

- system with two levels $|0\rangle$ and $|1\rangle$; 2 dimensional Hilbert space :
 - spin ¹/₂ particle (electron) : two orthogonal states are spin up and spin down
 - photon polarization : two linear (circular) polarizations
 - two energy states of an ion
- Whole system of *n* qubits : Hilbert space is *H* = *H*^{⊗n}_i, dim(*H*) = 2ⁿ (exponential in n)
- Elements from Hilbert space in computational basis $|01 \dots 1\rangle = |0\rangle \otimes |1\rangle \otimes \cdots \otimes |1\rangle.$

Definition of a separable state

Definition of a separable state:

Pure states

$$|\psi\rangle = |\psi^{\rm A}\rangle \otimes |\psi^{\rm B}\rangle$$

Mixed states (density matrices)

$$\rho = \sum_{i} \boldsymbol{\rho}_{i} |\psi_{i}^{\mathrm{A}}\rangle \langle\psi_{i}^{\mathrm{A}}| \otimes |\psi_{i}^{\mathrm{B}}\rangle \langle\psi_{i}^{\mathrm{B}}|$$

イロト 不得 とくほと くほとう

 $p_i > 0$ and $\sum_i p_i = 1 \; (|\psi_i^{\mathrm{A,B}}
angle$ need not be orthogonal)

Entangled states

A state is entangled if it is not separable.

Basis states $|0\rangle$ and $|1\rangle$ (aka. quantum bits - qubits).

• Pure entangled state of two qubits:

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle), \qquad |\psi\rangle &= \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \\ |\psi\rangle &= \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle), \qquad |\psi\rangle &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \end{split}$$

Bell or EPR states.

Random quantum states - motivation

Analogy:

(classical) random numbers \iff (quantum) random states

Why study?

- They are generic (typical state).
- Complex quantum system random state during evolution (quantum chaos).
- Shared entangled state is a useful resource! (state with a large Schmidt rank, e.g., random, maximally entangled...)

Random quantum states (def.)

Random pure states - definition

Several possibilities to define random $|\psi\rangle = \sum_i c_i |i\rangle$:

- c_i are random Gaussian complex numbers
- $|\psi
 angle$ is eigenvector of a random Hermitian matrix

イロン イロン イヨン イヨン

э

- $|\psi
 angle$ is a column of a random unitary matrix
 - unique unitarily invariant Haar measure

Questions

- What are their entanglement properties?
- e How to generate them?

Entanglement of pure states

Pure state entanglement

Schmidt decomposition:

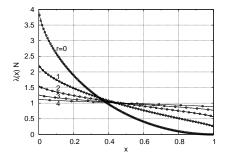
$$|\psi\rangle = \sum_{i=0}^{N_{\rm A}-1} \sqrt{\lambda_i} |\mathbf{w}_i^{\rm A}\rangle \otimes |\mathbf{w}_i^{\rm B}\rangle.$$

- $|w_i^{\rm A}\rangle$ and $|w_i^{\rm B}\rangle$ are orthonormal
- λ_i are eigenvalues of the reduced $\rho_A = tr_B |\psi\rangle \langle \psi |$
- For mixed states it is hard to quantify entanglement
- For pure states easy : all λ_i completely characterize it
 - if all equal, $\lambda_i = \frac{1}{N_A}$, "the most" entangled state; in 2 × 2 this is for instance EPR state

Can we calculate λ_i for random pure states?

Eigenvalues for random states

To calculate average $\langle \lambda_i \rangle$ (average over random states) in the limit $N_A \rightarrow \infty$ use Marčenko-Pastur for the density of eigenvalues (Žnidarič, JPA 40 F105 '07)



• $w = 1/2^{2r} = N_A/N_B$ (bipartition to n/2 - r and n/2 + r spins)

•
$$\mathbf{W} \ll \mathbf{1} \Longrightarrow \rho_{\mathrm{A}} \approx \frac{1}{N_{\mathrm{A}}} \mathbb{1}$$

• Deviations from $\lambda_i = 1/N_A$ are $\sim \frac{2}{N_A}\sqrt{w}$, *i.e.*, exponentially small in the number of "particles" in \mathcal{H}_B .

How to generate random states?

- In principle we need 2N 1 parameters for random $|\psi\rangle$ (too many) They are generic, but are they physical?
- We want a method that is polynomial in $n = \log(N)$

Example

- start with a non-random $|\psi\rangle$, *e.g.*, $|00...0\rangle$
- at each step apply a random 2-qubit gate to a random pair of qubits

How many steps do we need?

<ロ> (四) (四) (日) (日) (日)

Number of steps

Number of steps until all eigenvalues $\approx 1/N_A$, purity $I = \text{tr}_A \rho_A^2 \approx 1/N_A$? ($|\psi\rangle$ is as entangled as a typical random state)

Single step analysis

- expand $\rho = |\psi\rangle\langle\psi|$ over Pauli basis, $\rho(c_i) = \sum_i c_i \ \sigma^{i_1} \otimes \sigma^{i_2} \otimes \cdots \otimes \sigma^{i_n}$
- $\sigma^{i_j} \in \{1, \sigma^x, \sigma^y, \sigma^z\}$, matrix basis for U(2).
- after one step you get $\rho'(c'_i) = U\rho(c_i)U^{\dagger}$
- to calculate purity we need c_i^2
- it turns out that (c'_i)² depend linearly on (c_i)² (no c_ic_j terms)!
- Markov chain, $(c')^2 = M \cdot c^2$ (Oliveira, Dahlstein, Plenio, PRL 98, 130502 (07))

Markov chain

Markov chain

- Markov chain only if two-qubit gate preserves Pauli matrices (Wσ^αW[†] = σ^β)
- dimension of *M* is 4ⁿ
- What is the gap Δ ? \longrightarrow number of needed steps
- Is the chain rapidly mixing, *i.e.*, Δ ~ 1/poly(n)?
- Analytical estimate for W = CNOT and random i j coupling: $\Delta > \frac{4}{9n(n-1)}$ (Oliveira et.al. (07))

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

• Numerics gives (žnidarič, PRA 76, 012318 (07)) $\Delta \simeq 1.6/n$.

Analytical solution

Space of n "qudits", e.g., each site 4 states (Pauli matrices).

$$M=\frac{1}{n}\sum_{i}^{n}T_{i,i+1}\otimes\mathbb{1}$$

T transition matrix for two "qudits" ($4^2 \times 4^2$) and U(4) gate,

$$T = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \frac{1}{15} & \cdots & \frac{1}{15} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{1}{15} & \cdots & \frac{1}{15} \end{pmatrix}$$

Calculate the gap Δ !

Analytical solution (cont.)

Markov chain on 4^n equivalent to spin chain on 2^n

U(4) and nearest neighbor coupling – XY model:

$$h_{\rm XY} = \frac{1+\gamma}{2}\sigma_i^{\rm x}\sigma_j^{\rm x} + \frac{1-\gamma}{2}\sigma_i^{\rm y}\sigma_j^{\rm y} + h(\frac{1}{2}\sigma_i^{\rm z} + \frac{1}{2}\sigma_j^{\rm z}).$$

U(4) and all-all coupling – Lipkin-Meshkov-Glick:

$$hS_z + J_x S_x^2 + J_y S_y^2$$

CNOT and XY gates – XYZ model

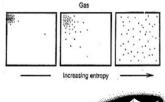
Analytical gap $\Delta \sim \frac{1}{n}$

< ロ > < 同 > < 三 >

Entanglement and classicality

Question

Why is there no observable entanglement in macro-world?



Classical irreversibility:

- practical issues of reversibility : almost impossible to reverse
- role of initial conditions: for most entropy increases

ヘロト ヘアト ヘヨト

picture from R.Penrose

Practicality

Random states are quantum

• almost maximally entangled, von Neumann entropy $S \approx \frac{n}{2}$ random states are very entangled - very quantum

...are classical

- in classical limit (N → ∞) random states mimic microcanonical density
- quantum expectation value in a random state is close to the classical average



low come?

Resolution:

- von Neumann entropy does not tell everything!
- Entanglement hidden in many degrees of freedom, e.g., Schmidt coefficients are $\sim 1/\sqrt{N_A}$ - exponentially small.
- Difficult to detect!

For all practical purposes classical.

Entanglement Witness

Definition

- If tr(ρ_{sep}W) > 0 for all separable ρ_{sep} and tr(ρ_{ent}W) < 0 for at least one entangled ρ_{ent} W is an entanglement witness. It detects entanglement of ρ_{ent}.
- In general different W for different ρ_{ent} .

Decomposable EW

Especially simple are decomposable EW: $W = P + Q^{T_B}, \qquad P, Q \ge 0$

- Q^{T_B} is partial transposition with respect to subspace B
- D-EW are equivalent to PPT criterion

Example of W

Example

- Take for Q a projector, $Q = |GHZ\rangle\langle GHZ|$ with $|GHZ\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$, and P = 0.
- Subsystem B is last qubit, $W = Q^{T_B}$, $W = \frac{1}{2}(|000\rangle\langle 000| + |111\rangle\langle 111| + |001\rangle\langle 110| + |110\rangle\langle 001|).$
- *W* has one negative eigenvalue with the eigenvector $|\psi\rangle = \frac{1}{2}(|001\rangle |110\rangle).$
- $\langle \psi | \boldsymbol{W} | \psi \rangle = -\frac{1}{2}$. Detects entanglement of $| \psi \rangle$.
- $\langle GHZ|W|GHZ \rangle = \frac{1}{2}$. Does not detect entanglement of $|GHZ \rangle$.

Results (M.Ž., T.Prosen, G.Benenti and G.Casati, JPA 40, 13787 (2007)

- Large random states almost classical.
- **Random** W (unknown ρ) : Gaussian p(w), tr($W\rho$) ~ $-1/N_A^2$
 - $\mathcal{P}(w < 0) = (1 \operatorname{erf}(1/\sqrt{2}))/2 \approx 0.16$
 - mixing k states, $\rho \sim \sum^{k} |\psi_i\rangle \langle \psi_i|$, $\mathcal{P}(w < 0) = (1 - \operatorname{erf}(\sqrt{k/2}))/2 \asymp \frac{1}{\sqrt{k}} e^{-k/2}$
- **Optimal** W (known ρ) : tr($W\rho$) = $-|\lambda_{\min}(\rho^{T_{B}})|$
 - pure state (k = 1) : $\lambda_{\min} = -4/N_A$
 - large $k \gg 1$: $\lambda_{\min} \sim -1/N_A^2$
 - $k > k^* \approx 4N_A^2$: $\lambda_{\min} > 0$

Initial conditions

Setting

- Large n qubit quantum system
- Start in generic separable state (no entanglement)
- Evolve with some hamiltonian
- What is entanglement of smaller subsystem (two qubits)

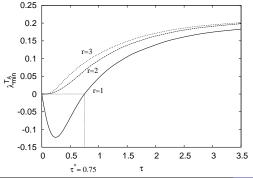
How much entanglement, for how long ...?

We would "like" to see: For generic i.c. low entanglement only for short times and regardless of *H*!

(M.Ž. preprint arXiv:0805.0523)

Arbitrary H with two-particle coupling h. Initial time scale dictated by

$$\lambda_{\min}^{T_A} = -|\delta|t + \mathcal{O}(t^2), \qquad \delta = \langle \chi_A^{\perp} \chi_B^{\perp} | h^{(2)} | \chi_A \chi_B \rangle.$$



- n.n. two-body RMT model
- distance between qubits r

< □ > < 同 > < 三

• universality : almost the same dependence for any *H*

Initial state randomness as a universal source of decoherence

- randomness in initial state
- leads to universal behavior of entanglement between two qubits regardless of the coupling

イロト イポト イヨト イヨト

 entanglement present only for short time and directly coupled qubits

Summary

- Giving Schmidt coefficients completely determines entanglement of pure states – analytical expression
- Generating random bipartite entanglement in $\tau \sim n \ln \frac{1}{\epsilon}$, gap $\Delta \sim 1/n$

No entanglement in systems with many degrees of freedom:

- Practicality : hard to detect because many small Schmidt coefficients
- Generic initial states : entanglement only for short times and directly coupled qubits. Independent of *H*!