Bifurcations, order, and chaos in Bose-Einstein condensates with long-range interactions

Günter Wunner,
H. Cartarius, T. Fabčič, J. Main, P. Köberle, T. Schwidder

1. Institut für Theoretische Physik, Universität Stuttgart

Maribor, 8 July 2008

1. Introduction

- Bose-Einstein condensation: neutral atoms are caught in a trap and cooled down to \approx zero temperature, where a macroscopic quantum state forms in which all bosons occupy the same ground state
- Gross-Piatevksii equation for Bose-Einstein condensates (BEC)
- BEC with long-range interactions

ground state of interacting neutral atoms at $T=0$

system of N identical bosons in an external potential $U(\vec{r})$, interacting via a two-body interaction potential $V\left(\vec{r}, \vec{r}^{\prime}\right)$

- many-body Hamiltonian

$$
H=\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}+\sum_{i} U\left(\vec{r}_{i}\right)+\sum_{i<j} V\left(\vec{r}_{i}, \vec{r}_{j}\right)
$$

- Zero-temperature bosonic ground state: $\Psi=\prod_{i=1}^{N} \psi(i)$

Hartree equation for single-particle orbital ψ

$$
\left\{\frac{\vec{p}^{2}}{2 m}+U(\vec{r})+(N-1) \int V\left(\vec{r}, \vec{r}^{\prime}\right)\left|\psi\left(\vec{r}^{\prime}\right)\right|^{2} d^{3} \vec{r}^{\prime}\right\} \psi(\vec{r})=i \hbar \frac{\partial \psi(\vec{r})}{\partial t}
$$

- nonlinear Schrödinger equation
- superposition principle no longer applicable

Bose-Einstein condensation of "ordinary" neutral atoms (${ }^{7} \mathrm{Li},{ }^{85} \mathrm{Rb}, \ldots$): potentials

- external trapping potential to confine the condensate

$$
U(\vec{r})=\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

$\omega_{x}, \omega_{y}, \omega_{z}$: trapping frequencies

- dilute condensate, weakly interacting atoms \Longrightarrow only the short-range contact two-body interaction (s-wave scattering interaction) active

$$
V_{s}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{4 \pi a \hbar^{2}}{m} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

a : s-wave scattering length

Bose-Einstein condensation of "ordinary" neutral atoms (${ }^{7} \mathrm{Li},{ }^{85} \mathrm{Rb}, \ldots$): Hartree and Gross-Pitaevskii equation

Hartree equation for single-particle orbital ψ

$$
\left\{\frac{\vec{p}^{2}}{2 m}+\frac{m}{2}(\vec{\omega} \cdot \vec{r})^{2}+(N-1) \frac{4 \pi a \hbar^{2}}{m}|\psi(\vec{r})|^{2}\right\} \psi(\vec{r})=i \hbar \frac{\partial \psi(\vec{r})}{\partial t}
$$

- for $N \gg 1:(N-1) \approx N$,
define macroscopic wave function $\Psi(\vec{r}):=\sqrt{N} \psi(\vec{r})$, i.e. $\|\Psi\|^{2}=N$
Gross-Pitaevskii equation for Ψ

$$
\left\{\frac{\vec{p}^{2}}{2 m}+\frac{m}{2}(\vec{\omega} \cdot \vec{r})^{2}+\frac{4 \pi a \hbar^{2}}{m}|\Psi(\vec{r})|^{2}\right\} \Psi(\vec{r})=i \hbar \frac{\partial \Psi(\vec{r})}{\partial t}
$$

BEC of neutral atoms with additional long-range interaction: dipolar atoms (experiments by Pfau et al., PRL 94, 160001 (2005))

chromium $\left({ }^{52} \mathrm{Cr}\right)$: large magnetic moment, $\mu=6 \mu_{\mathrm{B}}$, i.e. also a long-range dipole-dipole interaction is active

$$
V_{\mathrm{dd}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{\mu_{0} \mu^{2}}{4 \pi} \frac{1-3 \cos ^{2} \theta^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

- new aspect: relative strength of the long-range and short-range interactions can be tuned by Feshbach resonances (change of the scattering length a)

BEC of neutral atoms with alternative long-range interaction: gravity-like $1 / r$ interaction

Motivation: proposal by D.O. O'Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, PRL 84, 5697 (2000)

6 "triads" of intense off-resonant laser beams average out $1 / r^{3}$ interactions in the near-zone limit of the retarded dipole-dipole interaction of neutral atoms in the presence of radiation I, while retaining the weaker $1 / r$ interaction

- gravity-like interaction: $V_{u}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{u}{\left|\vec{r}-\vec{r}^{\prime}\right|}$, "monopolar atoms"
- novel physical feature: self-trapping of the condensate, without external trap,
- theoretical advantage: for self-trapping analytical variational calculations are feasible

purpose of this talk

to study the classical and the quantum nonlinear effects of the Gross-Pitaevskii equations for cold

- monopolar quantum gases ($1 / r$ interaction) and
- dipolar quantum gases (dipole-dipole interaction)

outline of the talk

- 1. Introduction
- 2. Scaling properties of the Gross-Pitaevskii equations with long-range interactions
- 3. Quantum results: solutions of the stationary Gross-Pitaevskii equations
- 4. Nonlinear dynamics of Bose-Einstein condensates with atomic long-range interactions

2.1 Gross-Pitaevskii equation for atoms with gravity-like interaction in an isotropic trap

Gross-Piatevskii equation for orbital ψ

$$
\begin{array}{r}
\left\{\frac{\vec{p}^{2}}{2 m}+\frac{m \omega_{0}^{2}}{2} r^{2}+N\left[\frac{4 \pi a \hbar^{2}}{m}|\psi(\vec{r})|^{2}-u \int \frac{\left|\psi\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}\right]\right\} \psi(\vec{r})= \\
\varepsilon \psi(\vec{r})
\end{array}
$$

- natural units: trap energy $\hbar \omega_{0}$, oscillator length a_{0} self-trapping: $\hbar \omega_{0} \rightarrow 0, a_{0}=\sqrt{\hbar / m \omega_{0}} \rightarrow \infty$, bad units
- more adequate: "atomic units"
analogy $u \Leftrightarrow e^{2} / 4 \pi \varepsilon_{0}$: "fine-structure constant" $\alpha_{u}:=u / \hbar c$
- "Bohr radius" $a_{u}=\lambda_{\mathrm{C}} / \alpha_{u}=\hbar / m u$
- "Rydberg energy" $E_{u}=\alpha_{u}^{2} m c^{2} / 2=\hbar^{2} / 2 m a_{u}^{2}$

Gross-Piatevskii equation for monopolar gases

in "atomic units"

$$
\underbrace{\left\{-\Delta+\gamma^{2} r^{2}+N 8 \pi \frac{a}{a_{u}}|\psi(\vec{r})|^{2}-2 N \iint \frac{\left|\psi\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}\right\}}_{\text {mean-field Hamiltonian } H_{\mathrm{mf}}} \psi(\vec{r})=\varepsilon \psi(\vec{r})
$$

- three physical parameters:
$\gamma=\hbar \omega_{0} / E_{\mathrm{u}}$: trap frequency
N : particle number,
a / a_{u} : relative strength of scattering and gravity-like potential
- estimate: $a \sim 10^{-9} \mathrm{~m}, a_{u} \sim 2.5 \times 10^{-4} \mathrm{~m}$, thus

$$
a / a_{u} \sim 10^{-6}-10^{-5}
$$

scaling property of $H_{\mathrm{mf}} \Rightarrow$ only two relevant parameters:

 $\gamma / N^{2}, N^{2} a / a_{u}$mean field energy: $E\left(N, N^{2} a / a_{u}, \gamma / N^{2}\right) / N^{3}=E\left(N=1, a / a_{u}, \gamma\right)$

2.2 Gross-Pitaevskii equation for atoms with dipolar interaction in an axisymmetric trap

Gross-Pitaevskii equation for orbital ψ

$$
\begin{array}{r}
\left(\hat{h}+N\left\{\frac{4 \pi a \hbar^{2}}{m}|\psi(\mathbf{r})|^{2}+\frac{\mu_{0} \mu^{2}}{4 \pi} \int d^{3} r^{\prime} \frac{1-3 \cos ^{2} \vartheta^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2}\right\}\right) \psi(\mathbf{r}) \\
\end{array}
$$

with

$$
\hat{h}=-\frac{\hbar^{2}}{2 m} \Delta_{\mathbf{r}}+V_{\text {trap }}(\mathbf{r})
$$

and

$$
V_{\text {trap }}=m\left(\omega_{\rho}^{2} r^{2}+\omega_{z}^{2} z^{2}\right) / 2
$$

- units of length: a_{d}

$$
\text { energy: } E_{\mathrm{d}}
$$

$$
a_{\mathrm{d}}=\frac{\mu_{0} \mu^{2} m}{2 \pi \hbar^{2}}
$$

frequency ω_{d}

$$
E_{\mathrm{d}}=\hbar^{2} /\left(2 m a_{\mathrm{d}}^{2}\right) \quad \omega_{\mathrm{d}}=E_{\mathrm{d}} / \hbar
$$

Gross-Pitaevskii equation for dipolar gases

in dimensionless form:

$$
\begin{aligned}
& {\left[-\Delta+\gamma_{\rho}^{2} \rho^{2}+\gamma_{z}^{2} z^{2}+N 8 \pi \frac{a}{a_{d}}|\psi(\mathbf{r})|^{2}\right.} \\
& \left.+N \int\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2} \frac{\left(1-3 \cos ^{2} \vartheta^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{3} \mathbf{r}^{\prime}\right] \psi(\mathbf{r})=\varepsilon \psi(\mathbf{r})
\end{aligned}
$$

with

$$
\gamma_{\rho, z}=\omega_{\rho, z} /\left(2 \omega_{\mathrm{d}}\right)
$$

- 4 physical parameters: $N, a / a_{d}, \gamma_{\rho}, \gamma_{z},\left(\bar{\gamma}=\gamma_{\rho}^{2 / 3} \gamma_{z}^{1 / 3}, \lambda=\gamma_{z} / \gamma_{\rho}\right)$
scaling property of $H_{\mathrm{mf}} \Rightarrow$ only three relevant parameters: $N^{2} \bar{\gamma}, \lambda, a / a_{\mathrm{d}}$
mean field energy: $E\left(N, a / a_{\mathrm{d}}, N^{2} \bar{\gamma}, \lambda\right)=E\left(N=1, a / a_{\mathrm{d}}, \bar{\gamma}, \lambda\right) / N^{2}$

3. Quantum results: solutions of the stationary Gross-Pitaevskii equations

$1 / r$ interaction (monopolar quantum gases):

- variational with an isotropic Gaussian type orbital:

$$
\psi=A \exp \left(-k^{2} r^{2} / 2\right)
$$

- numerically accurate by outward integration of the extended Gross-Pitaevskii equation
dipole-dipole interaction (dipolar quantum gases):
- variational with an axisymmetric Gaussian type orbital:

$$
\psi=A \exp \left(-k_{\rho}^{2} \rho^{2} / 2-k_{z}^{2} z^{2} / 2\right)
$$

coupled system of nonlinear equations resulting from $\frac{\partial E}{\partial k_{\rho}}=0, \frac{\partial E}{\partial k_{z}}=0$ is solved numerically for given trap parameters and scattering length

$1 / r$ interaction: chemical potential

for different trap frequencies

solid: accurate numerical calculation
dashed: variational
two stationary solutions are born at the critical point in a tangent bifurcation, below the critical point no stationary solutions exist

$1 / r$ interaction: bifurcation point as a function of trapping frequency

solid: accurate numerical calculation
dashed: variational

dipole-dipole interaction: chemical potential

for $N^{2} \bar{\gamma}=3.4 \times 10^{4}$ and different trap aspect ratios

two stationary solutions are born at the critical scattering length in a tangent bifurcation, below the critical scattering length no stationary solutions exist

dipole-dipole interaction: bifurcation of the mean-field energy

for $N^{2} \bar{\gamma}=3.4 \times 10^{4}$ and different trap aspect ratios

dipole-dipole interaction: universal dependence of the critical scattering length $a_{\text {crit }} / a_{\mathrm{d}}$ on the trap geometry:

Bose-Einstein condensates with long-range interactions: tangent bifurcations and exceptional points

résumé so far

- Stationary solutions appear only in certain regions of the parameter space.
- Two solutions appear in a tangent bifurcation at the critical value in parameter space.
- At the tangent bifurcation the chemical potential, the mean field energy, and the wave functions are identical.
- This behaviour is typical of exceptional points.
- The bifurcation points indeed turn out to be exceptional points.

4. Nonlinear dynamics of Bose-Einstein condensates with atomic long-range interactions

starting point:

- time-dependent Gross-Piatevskii equation for accurate numerical calculations

$$
\left[-\frac{\hbar^{2}}{2 m} \Delta+V_{\mathrm{ext}}(\mathbf{r})+N\left(\frac{4 \pi a \hbar^{2}}{m}|\psi(\mathbf{r})|^{2}+V_{\mathrm{int}}(\mathbf{r})\right)\right] \psi(\mathbf{r})=i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r})
$$

- $V_{\mathrm{int}}=$ electromagnetically induced attractive $1 / r$ interaction
- $V_{\text {int }}=$ dipole-dipole interaction
- time-dependent variational principle for variational calculations

$$
\|i \phi(t)-H \psi(t)\|^{2} \stackrel{!}{=} \text { min with respect to } \phi \quad(\phi \equiv \dot{\psi})
$$

Using a complex parametrization of the trial wave function $\psi(t)=\chi(\boldsymbol{\lambda}(t))$, the variation leads to the equations of motion for the parameters $\boldsymbol{\lambda}(t)$:

$$
\left\langle\left.\frac{\partial \psi}{\partial \boldsymbol{\lambda}} \right\rvert\, i \dot{\psi}-H \psi\right\rangle=0 \leftrightarrow K \dot{\boldsymbol{\lambda}}=-i \mathbf{h} \text { with } K=\left\langle\left.\frac{\partial \psi}{\partial \boldsymbol{\lambda}} \right\rvert\, \frac{\partial \psi}{\partial \boldsymbol{\lambda}}\right\rangle, \mathbf{h}=\left\langle\frac{\partial \psi}{\partial \boldsymbol{\lambda}}\right| H|\psi\rangle
$$

4.1 BEC with $1 / r$ interaction, self-trapping, variational

Gaussian trial wave function $\psi(r, t)=\exp \left\{\mathrm{i}\left[A(t) r^{2}+\gamma(t)\right]\right\}$, A, γ complex functions, equations of motion for $A=A_{r}+i A_{i}$:

$$
\dot{A}_{r}=-2\left(A_{r}^{2}-A_{i}^{2}\right)+\frac{4}{\sqrt{\pi}} A_{i}^{3 / 2}\left(a A_{i}-\frac{1}{6}\right), \dot{A}_{i}=-4 A_{r} A_{i}
$$

replace the variational width parameters $A=A_{r}+i A_{i}$ with two other dynamical quantities

$$
q=\frac{1}{2} \sqrt{\frac{3}{A_{i}}}=\sqrt{\left\langle r^{2}\right\rangle}, \quad p=A_{r} \sqrt{\frac{3}{A_{i}}},
$$

equations of motion in Hamiltonian form

mean-field energy:

$$
E=H(q, p)=T+V=p^{2}+\frac{9}{4 q^{2}}+\frac{3 \sqrt{3} a}{2 \sqrt{\pi} q^{3}}-\frac{\sqrt{3}}{\sqrt{\pi} q}
$$

converts the Gross-Pitaevskii equation into a one-dimensional classical autonomous Hamiltonian system with potential $V(q)$:

$$
\begin{aligned}
& \dot{q}=\frac{\partial H}{\partial p}=2 p \\
& \dot{p}=-\frac{\partial H}{\partial q}=\frac{9}{2 q^{3}}+\sqrt{\frac{3}{\pi}} \frac{9 a}{2 q^{4}}-\sqrt{\frac{3}{\pi}} \frac{1}{q^{2}} .
\end{aligned}
$$

BEC with $1 / r$ interaction, self-trapping, variational

phase portraits for different scattering lengths $a \equiv N^{2} a / a_{\mathrm{u}}$

$\mathrm{a}=-1.18=\mathrm{a}_{\mathrm{cr}}$
$\mathrm{a}=-1.3<\mathrm{a}_{\mathrm{cr}}$

fixed points: $\hat{A}_{r}=0, \hat{A}_{i}=\frac{1}{6 a}+\frac{\pi}{8 a^{2}}(1 \pm \sqrt{1+8 a / 3 \pi})$ clear indication of a stable and unstable stationary state.

4.2 Linear stability analysis of variational and exact quantum solutions for monpolar gases

linear stability analysis of the variational solutions

Linearization of the equations of motion around the stable (+) and unstable $(-)$ stationary states with the ansatz $A_{r, i}^{(\text {lin })}(t)=A_{r, i}^{(0)} e^{\lambda t}$ yields the eigenvalues

$$
\lambda_{+}= \pm \frac{8 \mathrm{i}}{9 \pi} \frac{\sqrt[4]{1+\frac{8 a}{3 \pi}}}{\left(\sqrt{1+\frac{8 a}{3 \pi}}+1\right)^{2}}, \quad \lambda_{-}= \pm \frac{8}{9 \pi} \frac{\sqrt[4]{1+\frac{8 a}{3 \pi}}}{\left(\sqrt{1+\frac{8 a}{3 \pi}}-1\right)^{2}}
$$

- The eigenvalues $\lambda_{+}= \pm \mathrm{i} \omega$ are always imaginary for $a>-3 \pi / 8$. Time evolution: $A_{r, i}^{(\text {lin })}(t)=A_{r, i}^{(0)} e^{\mathrm{i} \omega t} \hat{=}$ elliptic fixed point, condensate oscillates periodically
- The eigenvalues λ_{-}are positive and negative real for $a>-3 \pi / 8$. Time evolution: $A_{r, i}^{(\text {lin })}(t)=A_{r, i}^{(0)} e^{\lambda_{-} t} \hat{=}$ hyperbolic fixed point, condensate collapses

linear stability analysis of the exact quantum solutions

Linearization of the time-dependent Gross-Pitevskii equation around the stationary solutions $\hat{\psi}(\boldsymbol{r}, t)$ with the Fréchet derivative (using real and imaginary parts of the wave function) leads to:

$$
\begin{aligned}
\frac{\partial}{\partial t} \delta \psi^{R}(\boldsymbol{r}, t) & =\left(-\Delta-\varepsilon+8 \pi a \hat{\psi}(\boldsymbol{r})^{2}-2 \int \mathrm{~d} \boldsymbol{r}^{\prime} \frac{\hat{\psi}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\right) \delta \psi^{I}(\boldsymbol{r}, t) \\
\frac{\partial}{\partial t} \delta \psi^{I}(\boldsymbol{r}, t) & =\left(-\Delta-\varepsilon+24 \pi a \hat{\psi}(\boldsymbol{r})^{2}-2 \int \mathrm{~d}^{3} \boldsymbol{r}^{\prime} \frac{\hat{\psi}\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}\right) \delta \psi^{R}(\boldsymbol{r}, t) \\
& +4 \hat{\psi}(\boldsymbol{r}) \int \mathrm{d}^{3} \boldsymbol{r}^{\prime} \frac{\hat{\psi}\left(\boldsymbol{r}^{\prime}\right) \delta \psi^{R}\left(\boldsymbol{r}^{\prime}, t\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
\end{aligned}
$$

- Note: $\delta \psi^{R}(\boldsymbol{r})$ and $\delta \psi^{I}(\boldsymbol{r})$ can be complex wave functions.
- Only radially symmetric solutions are searched.

linearized integro-differential equations

- Using the ansatz for the eigenmodes

$$
\delta \psi^{R}(\boldsymbol{r}, t)=\delta \psi_{0}^{R}(\boldsymbol{r}) \mathrm{e}^{\lambda t}, \delta \psi^{I}(\boldsymbol{r}, t)=\delta \psi_{0}^{I}(\boldsymbol{r}) \mathrm{e}^{\lambda t}
$$

the two coupled integro-differential equations are transformed to ordinary differential equations with boundary conditions.

- Including the stationary wave function, the potential, and the linearized potential a total set of 18 real-valued first order differential equations must be solved.
- 6 real parameters must be varied to fulfill the boundary conditions.
- Because of a symmetry of the differential equations the stability eigenvalues occur in pairs: $\lambda_{1}=-\lambda_{2}$

stability eigenvalues for the ground state: numerical vs. variational results

- There is a pair $\lambda_{1}=-\lambda_{2}$ of purely imaginary eigenvalues which agree qualitatively very good with the variational calculation.
- Further purely imaginary eigenvalues can be found for "higher" states of the linearized system.

stability eigenvalues for the collectively excited stationary state: numerical vs. variational results

- There is a pair $\lambda_{1}=-\lambda_{2}$ of purely real eigenvalues which agree qualitatively very good with the variational calculation.
- Further purely imaginary eigenvalues were found for "higher" states of the linearized system.

4.3 Time evolution of condensates of monopolar gases

time evolution of the condensate: variational

above bifurcation point, stable region, $a=-1>a_{\text {cr }}, A_{i}(0)=0.3$

time evolution of the condensate: variational

above bifurcation point, beyond separatrix, $a=-1>a_{\text {cr }}, A_{i}(0)=0.38$

time evolution of the condensate: variational

below bifurcation point, $a=-1.3<a_{\text {cr }}, A_{i}(0)=0.1$

exact time-dependent quantum mechanical calculations

numerically exact propagation of perturbed stationary states $\psi_{ \pm}(r)$

$$
\psi(r)=f \cdot \psi_{ \pm}\left(r \cdot f^{2 / 3}\right)
$$

$\psi_{+} \quad$: \quad stable stationary state
$\psi_{-} \quad$: unstable stationary state
exact computations performed by the split operator method using the splitting $H=T+V$

$$
e^{-i \tau(T+V)}=e^{-i(\tau / 2) T} e^{-i \tau V} e^{-i(\tau / 2) T}+O\left(\tau^{3}\right)
$$

exact BEC dynamics, in the vicinity of ψ_{-}

Scaled scattering length $a=-0.85$ and $f=1.001$

exact BEC dynamics, in the vicinity of ψ_{-}

exact BEC dynamics, in the vicinity of ψ_{-}

Scaled scattering length $a=-0.85$ and $f=0.99$

exact BEC dynamics, in the vicinity of ψ_{-}

exact BEC dynamics, in the vicinity of ψ_{+}

Scaled scattering length $a=-0.85$

4.4 Dynamics of BEC with dipole-dipole interaction, variational

axisymmetric Gaussian trial function

$$
\psi(r, z, t)=e^{i\left(A_{\rho} \rho^{2}+A_{z} z^{2}+\gamma\right)} ; \quad A_{\rho}=A_{\rho}(t), A_{z}=A_{z}(t), \gamma=\gamma(t)
$$

Equations of motion follow from the time dependent variational principle

$$
\begin{aligned}
\dot{A}_{\rho}^{r} & =-4\left(\left(A_{\rho}^{r}\right)^{2}-\left(A_{\rho}^{i}\right)^{2}\right)+f_{\rho}\left(A_{\rho}^{i}, A_{z}^{i}, \gamma^{i}\right) \\
\dot{A}_{\rho}^{i} & =-8 A_{\rho}^{r} A_{\rho}^{i} \\
\dot{A}_{z}^{r} & =-4\left(\left(A_{z}^{r}\right)^{2}-\left(A_{z}^{i}\right)^{2}\right)+f_{z}\left(A_{\rho}^{i}, A_{z}^{i}, \gamma^{i}\right) \\
\dot{A}_{z}^{i} & =-8 A_{z}^{r} A_{z}^{i} \\
\dot{\gamma}^{r} & =-4 A_{\rho}^{i}-2 A_{z}^{i}+f_{\gamma}\left(A_{\rho}^{i}, A_{z}^{i}, \gamma^{i}\right) \\
\dot{\gamma}^{i} & =4 A_{\rho}^{r}+2 A_{z}^{r}
\end{aligned}
$$

solved with the initial values $A_{\rho}^{r}=0, A_{\rho}^{i}>0, A_{z}^{r}=0, A_{z}^{i}>0$ and

$$
\gamma^{i}=\frac{1}{2} \ln \frac{\pi^{3 / 2}}{2 \sqrt{2} A_{\rho}^{i} \sqrt{A_{z}^{i}}}
$$

Four remaining coupled ODEs for $\dot{A}_{\rho}^{r}, \dot{A}_{\rho}^{i}, \dot{A}_{z}^{r}, \dot{A}_{z}^{i}$!

equations of motion in Hamiltonian form

introduction of new variables $q_{\rho}, q_{z}, p_{\rho}, p_{z}$:
$\operatorname{Re} A_{\rho}=\frac{p_{\rho}}{4 q_{\rho}}, \operatorname{Im} A_{\rho}=\frac{1}{4 q_{\rho}^{2}}, \operatorname{Re} A_{z}=\frac{p_{z}}{4 q_{z}}, \operatorname{Im} A_{z}=\frac{1}{8 q_{z}^{2}}$
equations of motion for $q_{\rho}, q_{z}, p_{\rho}, p_{z}$ follow from the Hamiltonian:

$$
\begin{aligned}
H=T+V=\frac{p_{\rho}^{2}}{2}+\frac{p_{z}^{2}}{2}+\frac{1}{2 q_{\rho}^{2}}+ & 2 \gamma_{\rho}^{2} q_{\rho}^{2}
\end{aligned} \begin{aligned}
& \frac{a \sqrt{\frac{1}{q_{z}^{2}}}}{2 \sqrt{2 \pi} q_{\rho}^{2}}+\frac{1}{8 q_{z}^{2}}+2 \gamma_{z}^{2} q_{z}^{2} \\
& +\frac{\sqrt{\frac{1}{q_{z}^{2}}}\left(1+\frac{q_{\rho}^{2}}{q_{z}^{2}}-\frac{3 q_{\rho}^{2} \arctan \left[\sqrt{\left.\frac{q_{\rho}^{2}}{2 q_{z}^{2}}-1\right]}\right.}{q_{z}^{2} \sqrt{\frac{2 q_{\rho}^{2}}{q_{z}^{2}}-4}}\right)}{6 \sqrt{2 \pi} q_{\rho}^{4}\left(\frac{1}{q_{z}^{2}}-\frac{2}{q_{\rho}^{2}}\right)}
\end{aligned}
$$

2d nonintegrable Hamiltonian system, potential $V\left(q_{\rho}, q_{z}\right)$

mean field energy as a functions of the width parameters A_{ρ}^{i}, A_{z}^{i}

$$
A_{\rho}^{r}=0, A_{z}^{r}=0
$$

Poincaré surface of section

Poincaré surface of section

Poincaré surface of section

$$
\langle H\rangle=624000, \quad \sqrt[3]{\gamma_{z} \gamma_{\rho}^{2}}=3.4 \times 10^{4}, \quad \gamma_{z} / \gamma_{\rho}=6, \quad a=0.1
$$

Poincaré surface of section

Poincaré surface of section

4.5 Linear stability analysis of the variational solutions

linearization of the equations of motion for the real and imaginary parts of A_{r} and A_{z} around the stable and unstable stationary state yields four eigensolutions $\psi_{\text {lin }} \propto e^{\kappa t}$ with eigenvalues κ for each state

$\kappa_{\text {GS, } 1}, \kappa_{\text {GS, } 2}$	$\kappa_{\text {ES }, 1}, \kappa_{\text {ES }, 2}$
$\kappa_{\mathrm{GS}, 3}, \kappa_{\mathrm{GS}, 4}$	$\kappa_{\mathrm{ES}, 3}, \mathrm{~K}_{\mathrm{ES}, 4}$

$$
N^{2} \bar{\gamma}=3.4 \times 10^{4}, \lambda=6
$$

exact dynamic calculations for dipolar quantum gases: under way

Summary and conclusions

Motto: "Let's face BEC through nonlinear dynamics"

- variational forms of the BEC wave functions (of a given symmetry class) convert BECs via the Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear daynamics
- the results serve as a useful guide to look for nonlinear dynamic effects in numerically exact quantum calculations of BECs
- existence of stable islands as well as chaotic regions for excited states of dipolar BECs could be checked experimentally

Related articles

- H. Cartarius, J. Main, G. Wunner; Phys. Rev. Lett. 99, 173003 (2007)
- I. Papadopoulos, P. Wagner, G. Wunner, J. Main; Phys. Rev. A 76, 053604 (2008)
- H. Cartarius, J. Main, G. Wunner; Phys. Rev. A 77, 013618 (2008)
- H. Cartarius, T. Fabčič, J. Main, G. Wunner; Phys. Rev. A 77, 013615 (2008)
- P. Wagner, H. Cartarius, T. Fabčič, J. Main, G. Wunner; Preprint arXiv:0802.4055 (2008)

Bonus material: exceptional points in linear quantum systems

Definition and properties

Exceptional points are the coalescence of two (or even more) eigenstates at a certain parameter value of a system.

$$
\boldsymbol{M}(\lambda) \vec{x}(\lambda)=e(\lambda) \vec{x}(\lambda)
$$

- Two complex eigenvalues are identical (degeneracy).
- At the exceptional point a branch point singularity appears.
- The corresponding space of eigenvectors is one-dimensional.

Appearance in quantum systems

- Exceptional points can appear as degeneracies of complex energy eigenvalues of non-Hermitian Hamiltonians which describe resonances.
- Example for a real physical system: Hydrogen atom in crossed electric and magnetic fields

A simple example

2×2 matrix with an exceptional point

$$
\boldsymbol{M}(\lambda)=\left(\begin{array}{rr}
1 & \lambda \\
\lambda & -1
\end{array}\right)
$$

- Eigenvalues: $e_{1}=\sqrt{1+\lambda^{2}}, \quad e_{2}=-\sqrt{1+\lambda^{2}}$
- Eigenvectors:

$$
\vec{x}_{1}(\lambda)=\binom{-\lambda}{1-\sqrt{1+\lambda^{2}}} \quad \vec{x}_{2}(\lambda)=\binom{-\lambda}{1+\sqrt{1+\lambda^{2}}}
$$

There are two exceptional points for $\lambda= \pm \mathrm{i}$

$$
\boldsymbol{M}(\pm \mathrm{i})=\left(\begin{array}{cc}
1 & \pm \mathrm{i} \\
\pm \mathrm{i} & -1
\end{array}\right), \quad e_{1,2}(\pm \mathrm{i})=0, \quad \vec{x}(\pm \mathrm{i})=\binom{\mp \mathrm{i}}{1}
$$

Circle around an exceptional point in the parameter space

A further property of exceptional points

The two eigenvalues which degenerate at the exceptional point are permuted if a closed loop around the exceptional point is traversed in parameter space.

- The end point of the path of the first eigenvalue is the starting point of the second and vice versa.
- The combined paths of both eigenvalues lead to a closed loop.

Self trapped condensate with attractive $1 / r$-interaction

- Scaled extended Gross-Pitaevskii equation in "atomic units":

$$
\varepsilon \psi(\vec{r})=\left[-\Delta_{\vec{r}}+\left(8 \pi a|\psi(\vec{r})|^{2}-2 \int \mathrm{~d}^{3} \vec{r}^{\prime} \frac{|\psi(\vec{r})|^{2}}{|\vec{r}-\vec{r}|}\right)\right] \psi(\vec{r})
$$

- Trial wave function for a variational solution:

$$
\psi(\vec{r})=A \exp \left(\frac{-k^{2} \vec{r}^{2}}{2}\right), \quad k_{ \pm}=\frac{1}{2} \sqrt{\frac{\pi}{2}} \frac{1}{a}\left(\pm \sqrt{1+\frac{8}{3 \pi} a}-1\right)
$$

Degeneracy: analytical results

$$
a=-\frac{3 \pi}{8} \quad \rightarrow \quad k_{+}=k_{-}, \quad E_{+}=E_{-} \quad \varepsilon_{+}=\varepsilon_{-},
$$

- Energies are identical
- Wave functions $\psi_{k_{+}}$and $\psi_{k_{-}}$are identical

$1 / r$: Circle around the degeneracy

Exceptional point?

- A two-dimensional parameter space is required: extension to complex numbers: $a \in \mathbb{C}$
- A clear proof is the permutation of two eigenvalues if a circle around the critical parameter value is traversed:

$$
a=-\frac{3 \pi}{8}+r \mathrm{e}^{i \varphi}, \quad \varphi=0 \ldots 2 \pi
$$

We have confirmed our results with numerically exact calculations.

$1 / r$: Mean field energy and chemical potential for r

Fractional power series expansion of the mean field energy

$$
\begin{aligned}
\tilde{E}_{ \pm}(\varphi)=-\frac{4}{9 \pi}+0 \cdot \sqrt{r} \mathrm{e}^{i \varphi / 2} & +\frac{32}{27 \pi^{2}} \cdot \sqrt{r}^{2} \mathrm{e}^{\mathrm{i} \varphi} \\
& \pm\left(\frac{4}{9 \pi}-\frac{32}{9 \pi^{2}}\right) \cdot \sqrt{r}^{3} \mathrm{e}^{(3 / 2) \mathrm{i} \varphi}+\mathrm{O}\left(\sqrt{r}^{4}\right)
\end{aligned}
$$

- The first order term with the phase factor $\mathrm{e}^{\mathrm{i} \varphi / 2}$ vanishes.
- Responsible for the permutation: third order term

Fractional power series expansion of the chemical potential

$$
\begin{aligned}
& \tilde{E}_{ \pm}(\varphi)=-\frac{20}{9 \pi} \pm \frac{8}{3 \pi} \cdot \sqrt{r} \mathrm{e}^{i \varphi / 2}-\left(\frac{4}{3 \pi}+\frac{128}{27 \pi^{2}}\right) \cdot \sqrt{r}^{2} \mathrm{e}^{\mathrm{i} \varphi} \\
& \pm\left(\frac{8}{9 \pi}-\frac{64}{9 \pi^{2}}\right) \cdot \sqrt{r}^{3} \mathrm{e}^{(3 / 2) \mathrm{i} \varphi}+\mathrm{O}\left(\sqrt{r}^{4}\right)
\end{aligned}
$$

- The first order term with the phase factor $\mathrm{e}^{\mathrm{i} \varphi / 2}$ does not vanish.

Dipolar condensate

Scaled extended Gross-Pitaevskii equation

$$
\begin{aligned}
\varepsilon \psi(\vec{r})=\left[-\Delta+\gamma_{r}^{2} r^{2}+\gamma_{z}^{2} z^{2}+\right. & 8 \pi a|\psi(\vec{r})|^{2} \\
& \left.+\int \mathrm{d}^{3} \vec{r}^{\prime}|\psi(\vec{r})|^{2} \frac{1-3 \cos ^{2} \theta^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}\right] \psi(\vec{r})
\end{aligned}
$$

- Three-dimensional real parameter space:
- $\bar{\gamma}=\gamma_{r}^{2 / 3} \gamma_{z}^{1 / 3}$
- $\lambda=\gamma_{z} / \gamma_{r}$
- a
- Complex extension is possible: $a \in \mathbb{C}$

Dipolar condensate: Circle around the degeneracy

$$
a=a_{\text {crit }}+r \mathrm{e}^{i \varphi}, \quad \varphi=0 \ldots 2 \pi
$$

- $\lambda=1$: attractive dipole-dipole interaction

- $\lambda=6$: repulsive dipole-dipole interaction

discovery of exceptional points in stationary solutions of the Gross-Pitaevskii equation

- Exceptional points are branch point singularities, which are known from open quantum systems.
- A "nonlinear version" of an exceptional point appears in the bifurcating solutions of the (extended) Gross-Pitaevskii equation:
- BEC in a harmonic trap
- BEC with attractive $1 / r$ interaction
- BEC with dipole-dipole interaction
- The identification of the exceptional points is possible with a complex extension of the scattering length.
- BECs near the collapse point are experimental realizations of a real physical system close to exceptional points.

