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1. Introduction

Bose-Einstein condensation: neutral atoms are caught in a trap and
cooled down to ≈ zero temperature, where a macroscopic quantum
state forms in which all bosons occupy the same ground state

Gross-Piatevksii equation for Bose-Einstein condensates (BEC)

BEC with long-range interactions



ground state of interacting neutral atoms at T = 0

system of N identical bosons in an external potential U(~r),
interacting via a two-body interaction potential V (~r, ~r ′)

many-body Hamiltonian

H =
∑
i

~p 2
i

2m
+
∑
i

U(~ri) +
∑
i<j

V (~ri, ~rj)

Zero-temperature bosonic ground state: Ψ =
∏N
i=1 ψ(i)

Hartree equation for single-particle orbital ψ

{
~p 2

2m
+ U(~r) + (N − 1)

∫
V (~r, ~r ′)|ψ(~r ′)|2d3~r ′

}
ψ(~r) = i~

∂ψ(~r)
∂t

nonlinear Schrödinger equation

superposition principle no longer applicable



Bose-Einstein condensation of “ordinary” neutral atoms
(7Li, 85Rb, ...): potentials

external trapping potential to confine the condensate

U(~r) =
m

2
(
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
)

ωx, ωy, ωz: trapping frequencies

dilute condensate, weakly interacting atoms =⇒ only the short-range
contact two-body interaction (s-wave scattering interaction) active

Vs(~r, ~r′) =
4πa~2

m
δ(~r − ~r′)

a: s-wave scattering length



Bose-Einstein condensation of “ordinary” neutral atoms
(7Li, 85Rb, ...): Hartree and Gross-Pitaevskii equation

Hartree equation for single-particle orbital ψ{
~p 2

2m
+
m

2
(~ω · ~r)2 + (N − 1)

4πa~2

m
|ψ(~r)|2

}
ψ(~r) = i~

∂ψ(~r)
∂t

for N � 1: (N − 1) ≈ N ,

define macroscopic wave function Ψ(~r) :=
√
Nψ(~r), i.e. ||Ψ||2 = N

Gross-Pitaevskii equation for Ψ{
~p 2

2m
+
m

2
(~ω · ~r)2 +

4πa~2

m
|Ψ(~r)|2

}
Ψ(~r) = i~

∂Ψ(~r)
∂t



BEC of neutral atoms with additional long-range inter-
action: dipolar atoms (experiments by Pfau et al., PRL 94, 160401 (2005))

chromium (52Cr): large magnetic moment, µ = 6µB, i.e. also a
long-range dipole-dipole interaction is active

Vdd(r, r′) =
µ0µ

2

4π
1− 3 cos2 θ′

|r− r′|3

new aspect: relative strength of the long-range and short-range
interactions can be tuned by Feshbach resonances (change of the
scattering length a)

www.pi5.uni-stuttgart.de/forschung/chromium1/chromium1.html



BEC of neutral atoms with alternative long-range
interaction: gravity-like 1/r interaction

Motivation: proposal by D.O. O’Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, PRL 84, 5697 (2000)

6 ”triads” of intense off-resonant

laser beams average out 1/r3

interactions in the near-zone limit of

the retarded dipole-dipole

interaction of neutral atoms in the

presence of radiation I, while

retaining the weaker 1/r interaction

a triad

resulting atom–atom potential in

the near-zone:

U(~r, ~r ′ ) = − 11
4π

Ik2α2

cε20

1
|~r−~r ′|

gravity-like interaction: Vu(~r, ~r ′) = − u

|~r − ~r ′|
, “monopolar atoms”

novel physical feature: self-trapping of the condensate, without
external trap,

theoretical advantage: for self-trapping analytical variational
calculations are feasible



purpose of this talk

to study the classical and the quantum nonlinear effects of the
Gross-Pitaevskii equations for cold

monopolar quantum gases (1/r interaction) and

dipolar quantum gases (dipole-dipole interaction)



outline of the talk

1. Introduction

2. Scaling properties of the Gross-Pitaevskii equations with
long-range interactions

3. Quantum results: solutions of the stationary Gross-Pitaevskii
equations

4. Nonlinear dynamics of Bose-Einstein condensates with atomic
long-range interactions



2.1 Gross-Pitaevskii equation for atoms with gravity-like
interaction in an isotropic trap

Gross-Piatevskii equation for orbital ψ

{
~p 2

2m
+
mω2

0

2
r2 +N

[
4πa~2

m
|ψ(~r)|2 − u

∫
|ψ(~r′)|2

|~r − ~r′|
d3~r′

]}
ψ(~r) =

εψ(~r)

natural units: trap energy ~ω0, oscillator length a0

self-trapping: ~ω0 → 0, a0 =
√

~/mω0 →∞, bad units

more adequate: ”atomic units”

analogy u⇔ e2/4πε0: ”fine-structure constant” αu := u/~c
”Bohr radius” au = λC/αu = ~/mu
”Rydberg energy” Eu = α2

umc
2/2 = ~2/2ma2

u



Gross-Piatevskii equation for monopolar gases

in ”atomic units”{
−∆ + γ2r2 +N8π

a

au
|ψ(~r)|2 − 2N

∫ ∫
|ψ(~r ′)|2

|~r − ~r ′|
d3~r ′

}
︸ ︷︷ ︸

mean−field HamiltonianHmf

ψ(~r) = εψ(~r)

three physical parameters:

γ = ~ω0/Eu: trap frequency

N : particle number,

a/au: relative strength of scattering and gravity-like potential

estimate: a ∼ 10−9 m, au ∼ 2.5× 10−4 m, thus
a/au ∼ 10−6 − 10−5

scaling property of Hmf ⇒ only two relevant parameters:
γ/N2, N2 a/au

mean field energy: E(N,N2a/au, γ/N
2) /N3 = E(N = 1, a/au, γ)



2.2 Gross-Pitaevskii equation for atoms with dipolar
interaction in an axisymmetric trap

Gross-Pitaevskii equation for orbital ψ

(
ĥ+N

{
4πa~2

m
|ψ (r)|2 +

µ0µ
2

4π

∫
d3r′

1− 3 cos2 ϑ′

|r− r′|3
|ψ (r′)|2

})
ψ (r)

= εψ (r)

with

ĥ = − ~2

2m
∆r + Vtrap (r)

and
Vtrap = m(ω2

ρr
2 + ω2

zz
2)/2

units of length: ad energy: Ed frequency ωd

ad =
µ0µ

2m

2π~2
Ed = ~2/(2ma2

d) ωd = Ed/~,



Gross-Pitaevskii equation for dipolar gases

in dimensionless form:

[
−∆ + γ2

ρρ
2 + γ2

zz
2 +N8π

a

ad
|ψ(r)|2

+ N

∫
|ψ(r ′)|2 (1− 3 cos2 ϑ′)

|r− r ′|3
d3r ′

]
ψ(r) = εψ(r)

with
γρ,z = ωρ,z/(2ωd)

4 physical parameters: N, a/ad, γρ, γz, (γ̄ = γ
2/3
ρ γ

1/3
z , λ = γz/γρ )

scaling property of Hmf ⇒ only three relevant parameters:
N2γ̄, λ, a/ad

mean field energy: E(N, a/ad, N
2γ̄, λ) = E(N = 1, a/ad, γ̄, λ) /N2



3. Quantum results: solutions of the stationary
Gross-Pitaevskii equations

1/r interaction (monopolar quantum gases):

variational with an isotropic Gaussian type orbital:

ψ = A exp(−k2r2/2)

numerically accurate by outward integration of the extended
Gross-Pitaevskii equation

dipole-dipole interaction (dipolar quantum gases):

variational with an axisymmetric Gaussian type orbital:

ψ = A exp(−k2
ρρ

2/2− k2
zz

2/2)

coupled system of nonlinear equations resulting from
∂E
∂kρ

= 0, ∂E∂kz
= 0 is solved numerically for given trap parameters and

scattering length



1/r interaction: chemical potential

for different trap frequencies

of N2a /au=−1.0251 corresponds to a bifurcation point of the
eigenvalue spectrum of Eq. �3�: below the critical point no
solution exists; at the critical point two solutions appear in a
tangent bifurcation. The total energies of the condensates
corresponding to the two solutions are also shown in Fig. 6.
It can be seen that the energy increases from the bifurcation
point on for the second solution. This would mean that above
the bifurcation point there exists a collective excited state of
the condensate in which all atoms occupy one and the same
nodeless orbital, just like in the true ground state.

The second solution is in fact present also in the varia-
tional calculation. It there appears as a second stationary
�maximum� point of the mean-field energy given as a func-
tion of the width of the Gaussian-type orbital. The variational
results for the chemical potential and the total energy of the
second solution are also included in Fig. 6. It can be seen
that a numerically accurate calculation is necessary for a
quantitative description of the bifurcation.

The second solution even persists in external trapping po-
tentials for any value of �. The bifurcation diagram for two
finite values of � is shown in Fig. 7. It can be seen that with
growing � the bifurcation point is shifted to smaller absolute
values of N2a /au. The increase of the total energy of the
second solution which is evident from the figures is a conse-
quence of the fact that the self-consistent potentials become
more and more binding and the wave functions more and
more localized, which leads to a dramatic increase in the
kinetic energy.

What is the physical meaning of the second solution?
We note, on the one hand, that it corresponds to a maxi-

mum of the mean-field energy functional. Schrödinger’s
equation, however, and in our case Eq. �3�, follows as the
Euler-Lagrange equation of a variational principle which
only demands the energy functional to be an extremum. Thus
the fact that the second solution corresponds to a maximum
of the energy functional does not preclude it from corre-
sponding to a real physical quantum state. On the other hand,
the two solutions are nodeless and hence nonorthogonal. Ob-
viously, this is a consequence of the nonlinearity of the ex-
tended Gross-Pitaevskii equation �3�: each solution creates
its own self-consistent potential and thus sees a different
Hamiltonian. This would seem surprising since the original
many-body Hamiltonian is Hermitian and linear in the wave
function, and therefore should possess only orthogonal
eigenstates. The nonlinearity of Eq. �3� is a result of the
Hartree approximation made for the states.

In studies of the decay rates in attractive trapped Bose-
Einstein condensates, with contact interaction only, Huepe et
al. �28,29� have seen similar behavior; i.e., a second solution
is born in a tangent bifurcation together with the ground
state. These states also are nonorthogonal. Analyzing the sta-
bility of the states, Huepe et al. have shown that the first
excited state out of the two solutions is unstable with respect
to macroscopic quantum tunneling.

This is a strong indication that the second solution found
in this paper in Bose condensates with gravitylike interaction
also corresponds to an unstable collectively excited state. A
way to establish this is to linearize the time-dependent
Gross-Pitaevskii equation corresponding to �3� around the
stationary states and to carry out a stability analysis, as was
done for the case of a pure attractive contact interaction by
Huepe et al. �28,29�. Alternatively, by choosing a Gaussian
ansatz with time-dependent widths �30�, equations of motion
for the widths can be obtained from the time-dependent
Gross-Pitaevskii equation and analyzed with standard stabil-
ity methods of nonlinear dynamics. Investigations along
these lines are under way.

We finally note that there is an analogy with bifurcations
seen in investigations of attractive one-dimensional Bose-
Einstein condensates on a ring �cf., e.g., �31–33��. There, at a
critical value of the ratio of the mean-field interaction energy
to the kinetic energy, symmetry-breaking, solitonlike solu-
tions appear, in addition to the symmetry-preserving solution
of the Gross-Pitaevskii equation, which are lower in energy.
By contrast, in the example discussed in this paper, both
bifurcating solutions possess the same symmetry.

V. CONCLUSIONS

We have reanalyzed Bose condensates with attractive 1/r
interaction by introducing appropriate atomic units which are
in particular adapted to the case of self-binding. We have
thus been able to derive previously unknown scaling proper-
ties of such condensates. We have calculated numerically
accurate results for wave functions and observables of self-
binding condensates and compared them with previous varia-
tional results. It turned out that in particular at negative scat-
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FIG. 7. �Color online� �a� Bifurcations of the chemical potential
for nonvanishing values of the trapping potential. The case �=0 is
shown for comparison. �b� Dependence of the critical scattering
length �the bifurcation point� on the frequency of the trapping po-
tential. Numerically accurate results are given by solid lines, varia-
tional results by dashed lines. To elucidate the behavior for small
values of � /N2, this region is shown in the inset on a logarithmic
scale.
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solid: accurate numerical calculation

dashed: variational

two stationary solutions are born at the critical point in a tangent
bifurcation, below the critical point no stationary solutions exist



1/r interaction: bifurcation point as a function of trapping
frequency

of N2a /au=−1.0251 corresponds to a bifurcation point of the
eigenvalue spectrum of Eq. �3�: below the critical point no
solution exists; at the critical point two solutions appear in a
tangent bifurcation. The total energies of the condensates
corresponding to the two solutions are also shown in Fig. 6.
It can be seen that the energy increases from the bifurcation
point on for the second solution. This would mean that above
the bifurcation point there exists a collective excited state of
the condensate in which all atoms occupy one and the same
nodeless orbital, just like in the true ground state.

The second solution is in fact present also in the varia-
tional calculation. It there appears as a second stationary
�maximum� point of the mean-field energy given as a func-
tion of the width of the Gaussian-type orbital. The variational
results for the chemical potential and the total energy of the
second solution are also included in Fig. 6. It can be seen
that a numerically accurate calculation is necessary for a
quantitative description of the bifurcation.

The second solution even persists in external trapping po-
tentials for any value of �. The bifurcation diagram for two
finite values of � is shown in Fig. 7. It can be seen that with
growing � the bifurcation point is shifted to smaller absolute
values of N2a /au. The increase of the total energy of the
second solution which is evident from the figures is a conse-
quence of the fact that the self-consistent potentials become
more and more binding and the wave functions more and
more localized, which leads to a dramatic increase in the
kinetic energy.

What is the physical meaning of the second solution?
We note, on the one hand, that it corresponds to a maxi-

mum of the mean-field energy functional. Schrödinger’s
equation, however, and in our case Eq. �3�, follows as the
Euler-Lagrange equation of a variational principle which
only demands the energy functional to be an extremum. Thus
the fact that the second solution corresponds to a maximum
of the energy functional does not preclude it from corre-
sponding to a real physical quantum state. On the other hand,
the two solutions are nodeless and hence nonorthogonal. Ob-
viously, this is a consequence of the nonlinearity of the ex-
tended Gross-Pitaevskii equation �3�: each solution creates
its own self-consistent potential and thus sees a different
Hamiltonian. This would seem surprising since the original
many-body Hamiltonian is Hermitian and linear in the wave
function, and therefore should possess only orthogonal
eigenstates. The nonlinearity of Eq. �3� is a result of the
Hartree approximation made for the states.

In studies of the decay rates in attractive trapped Bose-
Einstein condensates, with contact interaction only, Huepe et
al. �28,29� have seen similar behavior; i.e., a second solution
is born in a tangent bifurcation together with the ground
state. These states also are nonorthogonal. Analyzing the sta-
bility of the states, Huepe et al. have shown that the first
excited state out of the two solutions is unstable with respect
to macroscopic quantum tunneling.

This is a strong indication that the second solution found
in this paper in Bose condensates with gravitylike interaction
also corresponds to an unstable collectively excited state. A
way to establish this is to linearize the time-dependent
Gross-Pitaevskii equation corresponding to �3� around the
stationary states and to carry out a stability analysis, as was
done for the case of a pure attractive contact interaction by
Huepe et al. �28,29�. Alternatively, by choosing a Gaussian
ansatz with time-dependent widths �30�, equations of motion
for the widths can be obtained from the time-dependent
Gross-Pitaevskii equation and analyzed with standard stabil-
ity methods of nonlinear dynamics. Investigations along
these lines are under way.

We finally note that there is an analogy with bifurcations
seen in investigations of attractive one-dimensional Bose-
Einstein condensates on a ring �cf., e.g., �31–33��. There, at a
critical value of the ratio of the mean-field interaction energy
to the kinetic energy, symmetry-breaking, solitonlike solu-
tions appear, in addition to the symmetry-preserving solution
of the Gross-Pitaevskii equation, which are lower in energy.
By contrast, in the example discussed in this paper, both
bifurcating solutions possess the same symmetry.

V. CONCLUSIONS

We have reanalyzed Bose condensates with attractive 1/r
interaction by introducing appropriate atomic units which are
in particular adapted to the case of self-binding. We have
thus been able to derive previously unknown scaling proper-
ties of such condensates. We have calculated numerically
accurate results for wave functions and observables of self-
binding condensates and compared them with previous varia-
tional results. It turned out that in particular at negative scat-
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FIG. 7. �Color online� �a� Bifurcations of the chemical potential
for nonvanishing values of the trapping potential. The case �=0 is
shown for comparison. �b� Dependence of the critical scattering
length �the bifurcation point� on the frequency of the trapping po-
tential. Numerically accurate results are given by solid lines, varia-
tional results by dashed lines. To elucidate the behavior for small
values of � /N2, this region is shown in the inset on a logarithmic
scale.
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solid: accurate numerical calculation

dashed: variational



dipole-dipole interaction: chemical potential

for N2γ̄ = 3.4× 104 and different trap aspect ratios

Solutions II: Appearance of bifurcations

Chemical potential ε vs. scattering length
a/ad for different trap aspect ratios:
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Patrick Wagner Bifurcations in Bose-Einstein condensates with dipolar interactions

two stationary solutions are born at the critical scattering length in a
tangent bifurcation, below the critical scattering length no stationary
solutions exist



dipole-dipole interaction: bifurcation of the mean-field
energy

for N2γ̄ = 3.4× 104 and different trap aspect ratios

Solutions II: Appearance of bifurcations

Chemical potential ε vs. scattering length
a/ad for different trap aspect ratios:
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Total energy E vs. scattering length a/ad

for different trap aspect ratios:
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Patrick Wagner Bifurcations in Bose-Einstein condensates with dipolar interactions



dipole-dipole interaction: universal dependence of the
critical scattering length acrit/ad on the trap geometry:

Solutions IV: Behaviour of the critical point

Universal dependence of the critical scattering length acrit/ad on the trap
geometry:
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Patrick Wagner Bifurcations in Bose-Einstein condensates with dipolar interactions



Bose-Einstein condensates with long-range interactions:
tangent bifurcations and exceptional points

résumé so far
Stationary solutions appear only in certain regions of the parameter
space.

Two solutions appear in a tangent bifurcation at the critical value in
parameter space.

At the tangent bifurcation the chemical potential, the mean field
energy, and the wave functions are identical.

This behaviour is typical of exceptional points.

The bifurcation points indeed turn out to be exceptional points.



4. Nonlinear dynamics of Bose-Einstein condensates with
atomic long-range interactions

starting point:

time-dependent Gross-Piatevskii equation for accurate numerical
calculations[
− ~2

2m
∆ + Vext(r) +N

(
4πa~2

m
|ψ(r)|2 + Vint(r)

)]
ψ(r) = i~

∂

∂t
ψ(r)

Vint = electromagnetically induced attractive 1/r interaction
Vint = dipole-dipole interaction

time-dependent variational principle for variational calculations

||iφ(t)−Hψ(t)||2 != min with respect to φ (φ ≡ ψ̇).

Using a complex parametrization of the trial wave function
ψ(t) = χ(λ(t)), the variation leads to the equations of motion for
the parameters λ(t):〈
∂ψ
∂λ

∣∣∣iψ̇ −Hψ
〉

= 0 ↔ Kλ̇ = −ih with K =
〈
∂ψ
∂λ

∣∣∣∂ψ∂λ

〉
,h =

〈
∂ψ
∂λ

∣∣∣H∣∣∣ψ〉



4.1 BEC with 1/r interaction, self-trapping, variational

Gaussian trial wave function ψ(r, t) = exp{i[A(t)r2 + γ(t)]},
A, γ complex functions, equations of motion for A = Ar + iAi:

Ȧr = −2(A2
r −A2

i ) +
4√
π
A

3/2
i

(
aAi −

1
6

)
, Ȧi = −4ArAi

replace the variational width parameters A = Ar + iAi with two other
dynamical quantities

q =
1
2

√
3
Ai

=
√
〈r2〉 , p = Ar

√
3
Ai

,



equations of motion in Hamiltonian form

mean-field energy:

E = H(q, p) = T + V = p2 +
9

4q2
+

3
√

3a
2
√
πq3

−
√

3√
πq

converts the Gross-Pitaevskii equation into a one-dimensional classical

autonomous Hamiltonian system with potential V (q):

q̇ =
∂H

∂p
= 2p

ṗ = −∂H
∂q

=
9

2q3
+

√
3
π

9a
2q4

−
√

3
π

1
q2

.

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

 0  2  4  6  8  10

V
(q

)

q

a>acr

a=acr

a<acr



BEC with 1/r interaction, self-trapping, variational

phase portraits for different scattering lengths a ≡ N2a/au
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(
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√
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)
clear indication

of a stable and unstable stationary state.



4.2 Linear stability analysis of variational and exact
quantum solutions for monpolar gases



linear stability analysis of the variational solutions

Linearization of the equations of motion around the stable (+) and

unstable (−) stationary states with the ansatz A
(lin)
r,i (t) = A

(0)
r,i e

λt yields
the eigenvalues

λ+ = ± 8i
9π

4

√
1 + 8a

3π(√
1 + 8a

3π + 1
)2 , λ− = ± 8

9π

4

√
1 + 8a

3π(√
1 + 8a

3π − 1
)2

The eigenvalues λ+ = ±iω are always imaginary for a > −3π/8.

Time evolution: A
(lin)
r,i (t) = A

(0)
r,i e

iωt=̂ elliptic fixed point,
condensate oscillates periodically

The eigenvalues λ− are positive and negative real for a > −3π/8.

Time evolution: A
(lin)
r,i (t) = A

(0)
r,i e

λ−t=̂ hyperbolic fixed point,
condensate collapses



linear stability analysis of the exact quantum solutions

Linearization of the time-dependent Gross-Pitevskii equation around the
stationary solutions ψ̂(r, t) with the Fréchet derivative (using real and
imaginary parts of the wave function) leads to:

∂

∂t
δψR(r, t) =

(
−∆− ε+ 8πaψ̂(r)2 − 2

∫
dr′

ψ̂(r′)
|r − r′|

)
δψI(r, t)

∂

∂t
δψI(r, t) =

(
−∆− ε+ 24πaψ̂(r)2 − 2

∫
d3r′

ψ̂(r′)
|r − r′|

)
δψR(r, t)

+ 4ψ̂(r)
∫

d3r′
ψ̂(r′) δψR(r′, t)

|r − r′|

Note: δψR(r) and δψI(r) can be complex wave functions.

Only radially symmetric solutions are searched.



linearized integro-differential equations

Using the ansatz for the eigenmodes

δψR(r, t) = δψR0 (r)eλt , δψI(r, t) = δψI0(r)eλt

the two coupled integro-differential equations are transformed to
ordinary differential equations with boundary conditions.

Including the stationary wave function, the potential, and the
linearized potential a total set of 18 real-valued first order
differential equations must be solved.

6 real parameters must be varied to fulfill the boundary conditions.

Because of a symmetry of the differential equations the stability
eigenvalues occur in pairs: λ1 = −λ2



stability eigenvalues for the ground state: numerical vs.
variational results
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There is a pair λ1 = −λ2 of purely imaginary eigenvalues which
agree qualitatively very good with the variational calculation.

Further purely imaginary eigenvalues can be found for “higher”
states of the linearized system.



stability eigenvalues for the collectively excited stationary
state: numerical vs. variational results
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There is a pair λ1 = −λ2 of purely real eigenvalues which agree
qualitatively very good with the variational calculation.

Further purely imaginary eigenvalues were found for “higher” states
of the linearized system.



4.3 Time evolution of condensates of monopolar gases



time evolution of the condensate: variational

above bifurcation point, stable region, a = −1 > acr, Ai(0) = 0.3
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time evolution of the condensate: variational

above bifurcation point, beyond separatrix, a = −1 > acr, Ai(0) = 0.38
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time evolution of the condensate: variational

below bifurcation point, a = −1.3 < acr, Ai(0) = 0.1
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exact time-dependent quantum mechanical calculations

numerically exact propagation of perturbed stationary states ψ±(r)

ψ(r) = f · ψ±(r · f2/3)

ψ+ : stable stationary state
ψ− : unstable stationary state

exact computations performed by the split operator method using the
splitting H = T + V

e−iτ(T+V ) = e−i(τ/2)T e−iτV e−i(τ/2)T +O(τ3)



exact BEC dynamics, in the vicinity of ψ−

Scaled scattering length a = −0.85 and f = 1.001
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exact BEC dynamics, in the vicinity of ψ−

Scaled scattering length a = −1.0 and f = 1.00
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exact BEC dynamics, in the vicinity of ψ−

Scaled scattering length a = −0.85 and f = 0.99
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exact BEC dynamics, in the vicinity of ψ−

Scaled scattering length a = −0.85 and f = 0.99
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exact BEC dynamics, in the vicinity of ψ+

Scaled scattering length a = −0.85

f = 1.25 f = 1.01
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4.4 Dynamics of BEC with dipole-dipole interaction,
variational

axisymmetric Gaussian trial function

ψ(r, z, t) = ei(Aρρ
2+Azz

2+γ); Aρ = Aρ(t), Az = Az(t), γ = γ(t)

Equations of motion follow from the time dependent variational principle

Ȧrρ = −4((Arρ)
2 − (Aiρ)

2) + fρ(Aiρ, A
i
z, γ

i)

Ȧiρ = −8ArρA
i
ρ

Ȧrz = −4((Arz)
2 − (Aiz)

2) + fz(Aiρ, A
i
z, γ

i)

Ȧiz = −8ArzA
i
z

γ̇r = −4Aiρ − 2Aiz + fγ(Aiρ, A
i
z, γ

i)

γ̇i = 4Arρ + 2Arz

solved with the initial values Arρ = 0, Aiρ > 0, Arz = 0, Aiz > 0 and

γi =
1
2

ln
π3/2

2
√

2Aiρ
√
Aiz

,

Four remaining coupled ODEs for Ȧrρ, Ȧ
i
ρ, Ȧ

r
z, Ȧ

i
z !



equations of motion in Hamiltonian form

introduction of new variables qρ, qz, pρ, pz:

ReAρ = pρ

4qρ
, ImAρ = 1

4q2ρ
, ReAz = pz

4qz
, ImAz = 1

8q2z

equations of motion for qρ, qz, pρ, pz follow from the Hamiltonian:

H = T + V =
p2
ρ

2
+
p2
z

2
+

1
2q2ρ

+2γ2
ρq

2
ρ +

a
√

1
q2z

2
√

2πq2ρ
+

1
8q2z

+ 2γ2
zq

2
z

+

√
1
q2z

1 + q2ρ
q2z
−

3q2ρ arctan[

√
q2
ρ

2q2
z
−1]

q2z

√
2q2

ρ

q2
z
−4


6
√

2πq4ρ(
1
q2z
− 2

q2ρ
)



2d nonintegrable Hamiltonian system, potential V (qρ, qz)
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mean field energy as a functions of the width parameters
Ai
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Poincaré surface of section

〈H〉 = 450000, 3
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Poincaré surface of section

〈H〉 = 624000, 3
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Poincaré surface of section

〈H〉 = 624000, 3
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Poincaré surface of section

〈H〉 = 900000, 3

√
γzγ2

ρ = 3.4× 104, γz/γρ = 6, a = 0.1

0.0

5.0

10.0

15.0

20.0

-20 -15 -10 -5  0  5  10  15  20

A
ρi /1

03

Aρ
r/103



Poincaré surface of section

〈H〉 = 6000000, 3
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4.5 Linear stability analysis of the variational solutions

linearization of the equations of motion for the real and imaginary parts
of Ar and Az around the stable and unstable stationary state yields four
eigensolutions ψlin ∝ eκt with eigenvalues κ for each state
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N2γ̄ = 3.4× 104, λ = 6
exact dynamic calculations for dipolar quantum gases: under way



Summary and conclusions

Motto: ”Let’s face BEC through nonlinear dynamics”

variational forms of the BEC wave functions (of a given symmetry
class) convert BECs via the Gross-Pitaevskii equation into
Hamiltonian systems that can be studied using the methods of
nonlinear daynamics

the results serve as a useful guide to look for nonlinear dynamic
effects in numerically exact quantum calculations of BECs

existence of stable islands as well as chaotic regions for excited
states of dipolar BECs could be checked experimentally



Related articles

H. Cartarius, J. Main, G. Wunner; Phys. Rev. Lett. 99, 173003
(2007)

I. Papadopoulos, P. Wagner, G. Wunner, J. Main; Phys. Rev. A 76,
053604 (2008)

H. Cartarius, J. Main, G. Wunner; Phys. Rev. A 77, 013618 (2008)
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Bonus material: exceptional points in linear quantum
systems

Definition and properties

Exceptional points are the coalescence of two (or even more) eigenstates
at a certain parameter value of a system.

M(λ)~x(λ) = e(λ)~x(λ)
Two complex eigenvalues are identical (degeneracy).

At the exceptional point a branch point singularity appears.

The corresponding space of eigenvectors is one-dimensional.

Appearance in quantum systems

Exceptional points can appear as degeneracies of complex energy
eigenvalues of non-Hermitian Hamiltonians which describe
resonances.

Example for a real physical system: Hydrogen atom in crossed
electric and magnetic fields



A simple example

2× 2 matrix with an exceptional point

M(λ) =
(

1 λ
λ −1

)

Eigenvalues: e1 =
√

1 + λ2, e2 = −
√

1 + λ2

Eigenvectors:

~x1(λ) =
(

−λ
1−

√
1 + λ2

)
~x2(λ) =

(
−λ

1 +
√

1 + λ2

)

There are two exceptional points for λ = ±i

M(±i) =
(

1 ±i
±i −1

)
, e1,2(±i) = 0, ~x(±i) =

(
∓i
1

)



Circle around an exceptional point in the parameter space

A further property of exceptional points

The two eigenvalues which degenerate at the exceptional point are
permuted if a closed loop around the exceptional point is traversed in
parameter space.

e1

e2

exceptional point

eigenvaluesparameter
e

λ

The end point of the path of the first eigenvalue is the starting point
of the second and vice versa.

The combined paths of both eigenvalues lead to a closed loop.



Self trapped condensate with attractive 1/r-interaction

Scaled extended Gross-Pitaevskii equation in “atomic units”:

εψ(~r) =

[
−∆~r +

(
8πa |ψ(~r)|2 − 2

∫
d3~r′

|ψ(~r)|2

|~r − ~r′|

)]
ψ(~r)

Trial wave function for a variational solution:

ψ(~r) = A exp
(
−k2~r2

2

)
, k± =

1
2

√
π

2
1
a

(
±
√

1 +
8
3π
a− 1

)

Degeneracy: analytical results

a = −3π
8

→ k+ = k−, E+ = E− ε+ = ε−,

Energies are identical

Wave functions ψk+ and ψk− are identical



1/r: Circle around the degeneracy

Exceptional point?

A two-dimensional parameter space is required: extension to
complex numbers: a ∈ C
A clear proof is the permutation of two eigenvalues if a circle around
the critical parameter value is traversed:

a = −3π
8

+ reiϕ, ϕ = 0 . . . 2π
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We have confirmed our results with numerically exact calculations.



1/r: Mean field energy and chemical potential for r � 1

Fractional power series expansion of the mean field energy

Ẽ±(ϕ) = − 4
9π

+ 0 ·
√
reiϕ/2 +

32
27π2

·
√
r
2eiϕ

±
(

4
9π
− 32

9π2

)
·
√
r
3e(3/2)iϕ + O

(√
r
4
)

The first order term with the phase factor eiϕ/2 vanishes.

Responsible for the permutation: third order term

Fractional power series expansion of the chemical potential

Ẽ±(ϕ) = − 20
9π
± 8

3π
·
√
reiϕ/2 −

(
4
3π

+
128
27π2

)
·
√
r
2eiϕ

±
(

8
9π
− 64

9π2

)
·
√
r
3e(3/2)iϕ + O

(√
r
4
)

The first order term with the phase factor eiϕ/2 does not vanish.



Dipolar condensate

Scaled extended Gross-Pitaevskii equation

εψ(~r) =
[
−∆ + γ2

rr
2 + γ2

zz
2 + 8πa |ψ(~r)|2

+
∫

d3~r′ |ψ(~r)|2 1− 3 cos2 θ′

|~r − ~r′|3

]
ψ(~r)
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Dipolar condensate: Circle around the degeneracy

a = acrit + reiϕ, ϕ = 0 . . . 2π

λ = 1: attractive dipole-dipole interaction
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λ = 6: repulsive dipole-dipole interaction
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discovery of exceptional points in stationary solutions of
the Gross-Pitaevskii equation

Exceptional points are branch point singularities, which are known
from open quantum systems.

A “nonlinear version” of an exceptional point appears in the
bifurcating solutions of the (extended) Gross-Pitaevskii equation:

BEC in a harmonic trap
BEC with attractive 1/r interaction
BEC with dipole-dipole interaction

The identification of the exceptional points is possible with a
complex extension of the scattering length.

BECs near the collapse point are experimental realizations of a real
physical system close to exceptional points.




