
Microwave studies of chaotic systems
Lecture 1: Currents and vortices

Hans-Jürgen Stöckmann
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Billiard Experiments
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Why billiard systems?

They are one of the paradigms of non-linear dynamics!

Circular billiard:

Two constants of motion (energy E,
angular momentum L)

=⇒The circular billiard is integrable!

Stadium billiard:

One constant of motion (energy E)

=⇒The stadium billard is chaotic!
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Unique property of billiards

One-to-one correspondence between

the stationary Schrödinger equation

− ~
2

2m

(

∂2

∂x2 + ∂2

∂y2

)

ψn = Enψn

with the boundary condition ψn|R = 0 , and

the Helmholtz equation

−
(

∂2

∂x2 + ∂2

∂y2

)

ψn = k2
nψn !

Possibility to study “quantum chaos” by means of classical waves!
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Realizations

a) classical waves

vibrating plates (Chladni 1787)

microwave billiards
(Stöckmann et al. 1990)

capillary waves on water
surfaces (Blümel et al. 1992)

acoustic resonances in solids
(Ellegaard et al. 1995)

distorted light fibers (Doya et
al. 2002)

b) quantum mechanical systems

antidot structures (Weiss et
al. 1991)

mesoscopic billiards (Marcus
et al. 1992)

quantum corrals (Crommie et
al. 1993)

tunnelling barriers (Fromhold
et al. 1994)

(For details see: Quantum Chaos – An introduction, H.-J. Stöckmann,
Cambridge University Press 1999)
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Microwave billiards

Typical set-up

Such a set-up is used by
our students in their practi-
cal exercises.

Reflection spectrum of a
quarter-stadium billiard
(b = 20 cm, l = 36 cm)
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Scattering theory

Microwave experiments directly yield scattering matrix S (Stein et
al. 1995):

Sii: reflection amplitude at antenna i

Sij , (i 6= j): transmission amplitude between antennas i and j.

Billiard Breit-Wigner formula for isolated resonances:

Sij = δij − 2ıγ
∑

n

ψ̄n(r)ψ̄n(r′)
E−En+ ı

2Γn

=⇒Complete Green function available, including

spectra

wave functions

transport properties
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Nodal domains
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E. F. F. Chladni 1756 – 1827

Chladni, demonstrating the
sound figures in the Palais of
Thurn und Taxis, Regensburg
1800

Sound figures (E. Chladni,
Akustik, Leipzig 1802)
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Chladni figures

circular billiard: integrable

rectangular billiard: pseudo-
integrable

Sinai-billiard: chaotic
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Nodal domains statistics

Proposes nodal domain statistics to discriminate between integrable
and chaotic systems.
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Nodal domains statistics

Proposes nodal domain statistics to discriminate between integrable
and chaotic systems.

Expressions from a percolation model for mean
number of nodal domains in dependence of eigen-
value number n, and related quantities.
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Nodal lines and nodal points

In open systems: |ψ|2 = ψ2
R + ψ2

I

ψR, ψI : nodal lines
|ψ|2: nodal points
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Number of nodal domains

Prediction from percolation model: νn = an, a = 0.062

Number of nodal
domains
for real (+) and
imaginary (⋄)
part

solid line:
νn = an+ b

√
n

a = 0.059, b = 1.3

Asymptotically in agreement with percolation model (- - -).
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Area distribution of nodal domains

Area distribution for the real and imaginary part

Area normalized by smin = π/(x1k)
2, x1: first zero of J0(x)

In agreement with expected algebraic decay of (s/smin)
−187/91

from percolation model (shown as dashed line).
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Random superposition of plane waves
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Amplitude distributions

Observation:

Most wave function amplitudes in chaotic billiards are Gaussian
distributed (McDonald, Kaufman 1979)

p(ψ) =
√

A
2π exp

(

−Aψ2

2

)

A: billiard area
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Amplitude distributions ( cont.)

For the squared amplitudes ρ = |ψ|2 one obtains a Porter-Thomas
distribution instead

p(ρ) =
√

A
2πρ exp

(

−A
2 ρ

)

Example: Squared
amplitude distri-
bution of vibrating
silicon plates
(Schaadt 1997).
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Berry’s conjecture
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In a chaotic billiard at any site the wa-
ve function may be considered as a
random superposition of plane waves
(Berry 1977)

ψ(k, r) =
∑

n
ane

ıknr , |kn| = k

The Gaussian distributions of the wa-
ve function amplitudes then follow im-
mediately from the central-limit theo-
rem.
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Berry’s conjecture
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In a chaotic billiard at any site the wa-
ve function may be considered as a
random superposition of plane waves
(Berry 1977)

ψ(k, r) =
∑

n
ane

ıknr , |kn| = k

The Gaussian distributions of the wa-
ve function amplitudes then follow im-
mediately from the central-limit theo-
rem.

The same model has been derived independently in acoustics (Ebeling
1978).
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Light through distorted glas fibers

Laser

Detector

Example:

Monochromatic light, transported
through a glas fiber with a D-shaped
cross-section (Doya et al. 2002).

left: near-field intensity

right: far-field intensity
(=̂ Fourier transform of
near-field intensity)
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Spatial autocorrelation functions

Example: Amplitude spatial autocorrelation function

Cψ(~r) = 〈ψ∗(~r + ~r0)ψ(~r0)〉 〈· · ·〉: ensemble average
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Spatial autocorrelation functions

Example: Amplitude spatial autocorrelation function

Cψ(~r) = 〈ψ∗(~r + ~r0)ψ(~r0)〉 〈· · ·〉: ensemble average

With ψ(~r) =
∑

n
ane

ı~kn~r follows

Cψ(~r) =
∑

n,m

〈ana
∗

me
ı[~kn(~r+~r0)−~km~r0]〉

=
∑

n

〈|an|
2〉〈eı

~kn~r〉

=
1

A
〈eıkr cosφ〉

or

Cψ(~r) = 1
A
J0(kr) , r = |~r|
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Spatial autocorrelation functions

Example: Amplitude spatial autocorrelation function

Cψ(~r) = 〈ψ∗(~r + ~r0)ψ(~r0)〉 〈· · ·〉: ensemble average

With ψ(~r) =
∑

n
ane

ı~kn~r follows

Cψ(~r) =
∑

n,m

〈ana
∗

me
ı[~kn(~r+~r0)−~km~r0]〉

=
∑

n

〈|an|
2〉〈eı

~kn~r〉

=
1

A
〈eıkr cosφ〉

or

Cψ(~r) = 1
A
J0(kr) , r = |~r| Spatial autocorrelation function for ψ(r)

(a) and |ψ(r)|2 (b) in a 2D Sinai micro-
wave billiard (Kim et al. 2003).

Maribor, Let’s face chaos, July 2008 – p. 21



Justification of the model

Green function
G(~r1, ~r2, E) =

∑

n

ψ∗

n
(~r1)ψn(~r2)
E−En

With

δ(E) = lim
ε→0

1
π

ε
E2+ε2 = − 1

π Im 1
E+ıε

it follows

− 1
π ImG(~r1, ~r2, E + ıε) =

∑

n
δ(E −En)ψ

∗
n(~r1)ψn(~r2)
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Justification of the model

Green function
G(~r1, ~r2, E) =

∑

n

ψ∗

n
(~r1)ψn(~r2)
E−En

With

δ(E) = lim
ε→0

1
π

ε
E2+ε2 = − 1

π Im 1
E+ıε

it follows

− 1
π ImG(~r1, ~r2, E + ıε) =

∑

n
δ(E −En)ψ

∗
n(~r1)ψn(~r2)

=⇒

− 1
π 〈ImG(~r1, ~r2, E + ıε)〉E = ρ(E)〈ψ∗

n(~r1)ψn(~r2)〉E

where ρ(E) = A
4π for 2D billiards (Weyl formula).
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Justification of the model ( cont.)

Far off the walls the Green function can be replaced by the free-particle
Green function

G(~r1, ~r2, E) ≈ − ı
4H

(1)
0 (k |~r1 − ~r2|) , E = k2

=⇒
〈ψ∗
n(~r1)ψn(~r2)〉E = − 1

πρ(E)
〈ImG(~r1, ~r2, E + ıε)〉E

=
1

4πρ(E)
〈ReH

(1)
0 (k |~r1 − ~r2|)〉E

=
1

A
J0 (k |~r1 − ~r2|)

in accordance with our previous result (Hortikar et al. 2002, Urbina et
al. 2003)!
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Justification of the model ( cont.)

Far off the walls the Green function can be replaced by the free-particle
Green function

G(~r1, ~r2, E) ≈ − ı
4H

(1)
0 (k |~r1 − ~r2|) , E = k2

=⇒
〈ψ∗
n(~r1)ψn(~r2)〉E = − 1

πρ(E)
〈ImG(~r1, ~r2, E + ıε)〉E

=
1

4πρ(E)
〈ReH

(1)
0 (k |~r1 − ~r2|)〉E

=
1

A
J0 (k |~r1 − ~r2|)

in accordance with our previous result (Hortikar et al. 2002, Urbina et
al. 2003)!

However: Now the average is over all wave functions within an energy
window, no longer over individual wave functions!
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Flows
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Wave functions

Open system or system with broken time reversal symmetry:
ψ = ψR + ıψI = |ψ| exp(ıφ)

↔
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Wave functions

Open system or system with broken time reversal symmetry:
ψ = ψR + ıψI = |ψ| exp(ıφ)

↔

Additionally there is a flow of energy:

from Ez =̂ ψ

follows ~S ∝ c
4π Im [E∗

z∇Ez] =̂ ~j = ~

m Im [ψ∗∇ψ]

Poynting vector Current density
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Vortices and saddles

vortex: clockwise (+): counterclockwise (-):
saddles: orange crosses
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Nearest neighbour distances

Solid lines show analytical results in Poisson approximation
[Saichev et. al., 2001].

Dashed lines numerical results of the random plane wave model

Good agreement between theory and experiment
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Pair correlation functions

g: pair correlation function
gQ: charge correlation function

Good agreement for
small kr but period
length to small

Very good agreement,
only for lower kr small
deviations

[Berry, Dennis 2000; Saichev et. al. 2001; Bäcker, Schubert 2002]
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Limitations of the model

Stretching factor s needed to
adjust the experimentally ob-
served oscillations to theory

Explanation: For wavelengths comparable to the system size L the
frequencies of the plane waves are smeared out over a window of
width δ ∼ L−1.
This leads to a stretching and damping of the correlation functions:

g(kr) → g(skr)e−
δ
2

r
2

2
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Derivation of the stretching factor

All correlation functions are oscillatory with an algebraic damping

g(x) = e−a(kx) cos(kx) , a(kx) = n ln(kx)

Convolution by a Gaussian function yields

gconv(x) = ℜ
[

1√
πδ

∫

dk̄e−a(k̄x)−ık̄x−
(k̄−k)2

2δ2

]

Expanding a(k̄x) up to the linear term at k̄ = k one gets

gconv(x) = e−a(kx) cos(skx)e−
δ
2

x
2

2

where

s = 1 + δ2x
k a′(kx) = 1 + n

(

δ
k

)2

Maribor, Let’s face chaos, July 2008 – p. 30



Another example

Spatial amplitude autocorrela-
tion function in the low (top)
and high (bottom) frequency
regime

—: random plane wave model
without
—: and with stretching correcti-
ons

Maribor, Let’s face chaos, July 2008 – p. 31



Freak waves
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Motivation

500 nm

STM measurements of elec-
tron flow through quantum
point contact show fractal-like
branch structures (Topinka et
al. 2001)

Conjecture (Kaplan 2002): Branches are caused by caustics in a
potential landscape with a Gaussian correlated potential:

V (r)V (r′) ∼ e−|r−r′|2/σ2

If this is true, the branches should follow the slope, not the valleys, of
the potential!
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Experiment

For resonators with top and bottom parallel to each other with distance
d, the z dependence of E can be separated,

E(x, y, z) = E(x, y) cos
(

nπ
d z

)

It follows
[

−
(

∂2

∂x2 + ∂2

∂y2

)

+
(

nπ
d

)2
]

E(x, y) = k2E(x, y)

n = 0: hard-wall reflection
n 6= 0: additional term can be used to mimic a potential (Lauber et
al. 1994):

V (x, y) =
[

nπ
d(x,y)

]2

Condition: height variation must be adiabatic!
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Set-up

Transmission measured between fi-
xed antenna in the bottom, and mo-
vable antenna in the top

Arrangement of randomly distributed
cones (R = 2.5 mm, H = 10 mm) mi-
micking a potential

V (~r) = (πn)2

(hmin+ H

R
|~r|)2

hmin: distance between cone tip and
top plate
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Stationary field distributions

ν = 31 GHz:

five propagating modes n=0,. . . 4

Experiment Simulation

Maribor, Let’s face chaos, July 2008 – p. 36



Stationary field distributions

ν = 31 GHz:

five propagating modes n=0,. . . 4

Experiment Simulation
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Stationary field distributions ( cont.)

Experiment Simulation

Caustics are responsible!
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Relation to waves in the sea

The approach of Gaussian correlated potential may be applied to many
other situations as well, such as

light propagation in media with varying index of refraction

Evolution of wave patterns in spatially varying velocity fields

This allows a reinterpretation of the microwave results to study, e. g.,

Tsunami amplification by potential landscapes in shallow water
(Dobrokhotov et al. 2006, Berry 2007)

Formation of freakwaves due to eddy-generated local velocity
fields (Heller et al. 2008)
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Freak waves

Random superposition of plane waves yields

p(H) ∼ e−H
2/2σ2

(Rayleigh’s law)

for probability to find a wave with height > H above sealevel.

The actual number found in observations is much higher!
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The hot spots

Random expectation:

p(I) = 1
〈I〉e

−I/〈I〉 , I = |ψ|2
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The hot spots

Random expectation:

p(I) = 1
〈I〉e

−I/〈I〉 , I = |ψ|2

“Hot spots”, observed in all
scattering arrangement within
limited frequency windows
(∆ν ≈ 0.5 GHz).

Second order caustics effects?
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Transient behavior

Pulse generation, by superimposing wave functions from a Gaussian
frequency window about a hot spot, entering from different antenna
positions xi:

ψ(~r, t) = 1
N

N
∑

i=1

ψxi
(~r, ωi)e

ı(ωit−ϕi)

black: all points
orange: only hot spot
blue: all but hot spot region

solid black line: random expec-
tation
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Our super freak event

Intensity I/〈I〉 = 55

Experimental probability :10−9

“rare”, but 15 (!) orders of magnitude
larger as expected from a random su-
perposition!
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Summary

Microwave techniques offer the unique possibility to test theories
on the statistical properties of waves in chaotic systems.

The percolation model is able to explain the statistical features of
nodal domains

The random plane wave model is able to explain

distribution of wave functions and currents

spatial correlations of wave functions and currents

two-point correlation function of vortex-vortex, etc.

Limitations of the model close to boundaries are well understood

Noticeable deviations in the presence of potential landscapes

Implication for the understanding of the formation of rogue waves
in the sea.
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Thanks!

Coworkers:

U. Kuhl
M. Barth
K. Young-Hee
R. Schäfer
R. Höhmann

Cooperations:

S. Gnutzmann, Berlin
M. Dennis, Bristol, UK
J.-D. Urbina, Bogota, Colombia
E. Heller, Cambridge, USA
L. Kaplan, New Orleans, USA

The experiments have been supported by the DFG via the

FG 760 “Scattering Systems with Complex Dynamics”.
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