Transport and localization of Bose-Einstein condensates in disorder

Peter Schlagheck

Universität Regensburg

Outline

- Introduction: disorder with cold atoms
- Transport of Bose-Einstein condensates through disorder: solving the nonlinear scattering problem
- Transmission of condensates through 1D disorder potentials: Anderson localization with mean-field interaction?
- Transport through 2D disorder potentials: Coherent backscattering with interaction?

Conclusion

Disorder with cold atoms

 Ψ_2

Anderson localization

V(x)

- P. W. Anderson, Phys. Rev. 109, 1492 (1958)
 - exponential localization of eigenstates

 exponential decrease of the transmission with the length of the disordered region

→ realization with Bose-Einstein condensates?

Disorder potentials for cold atoms

Experimental realization of disorder potentials with

optical speckle fields:

J. E. Lye et al., PRL 95, 070401 (2005)

Disorder potentials for cold atoms

Experimental realization of disorder potentials with

optical speckle fields:
J. E. Lye *et al.*, PRL 95, 070401 (2005)

incommensurate optical lattices

L. Fallani et al., PRL 98, 130404 (2007)

Expansion experiments in disorder potentials

 \rightarrow exponential tails in the noninteracting regime, as predicted by the theory of Anderson localization

optical speckle fields:

J. Billy et al., Nature 453, 891 (2008)

bichromatic optical lattices:

G. Roati et al., Nature 453, 895 (2008)

Expansion experiments in disorder potentials

 \rightarrow exponential tails in the noninteracting regime, as predicted by the theory of Anderson localization

optical speckle fields:

J. Billy et al., Nature 453, 891 (2008)

bichromatic optical lattices:

G. Roati et al., Nature 453, 895 (2008)

- \rightarrow transmission properties in disordered systems?
- \rightarrow interaction effects?

Transmission through disorder potentials

 \rightarrow quasi-stationary transport process of the condensate:

Experimental realization: W. Guerin et al., PRL 97, 200402 (2006)

Transmission through disorder potentials

 \rightarrow quasi-stationary transport process of the condensate:

Connection with mesoscopic transport physics in solids / optics:

- $\rightarrow\,$ scaling theory of localization
- \rightarrow conductance fluctuations
- \rightarrow strong and weak localization in 2D disorder Anderson transition in 3D

Transport theory of Bose-Einstein condensates

Mean-field description of a condensate in a waveguide (1D mean-field regime):

1D Gross-Pitaevskii equation

$$i\hbar\frac{\partial}{\partial t}\psi(x,t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x) + 2a_s\hbar\omega_{\perp}|\psi(x,t)|^2\right)\psi(x,t)$$

with $a_s = s$ -wave scattering length between the atoms, $\omega_{\perp} =$ transverse confinement frequency of the waveguide

Transport theory of Bose-Einstein condensates

Numerical simulation of quasi-stationary scattering processes:

→ integrate Gross-Pitaevskii equation in presence of a source term

$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) + g|\psi(x,t)|^2\right)\psi(x,t) + S_0\delta(x-x_0)\exp(-i\mu t/\hbar)$$

T. Paul, K. Richter, and P.S., PRL 94, 020404 (2005)

No interaction between the atoms:

No interaction between the atoms:

- \rightarrow exponential decrease of the average transmission with the length L of the disorder region
- \rightarrow lognormal-type probability distribution for the transmission T at fixed length L:

$$P(\ln T) = \sqrt{\frac{L_{\rm loc}}{4\pi L}} \exp\left[-\frac{L_{\rm loc}}{4L} \left(\frac{L}{L_{\rm loc}} + \ln T\right)^2\right] \qquad \text{J.-L. Pichard, 1991}$$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

Finite interaction between the atoms: $g|\psi|^2 \simeq 0.1 \mu$

- permanently time-dependent scattering, except for very short disorder samples
- \implies compute time-averaged transmission: $\overline{T} = \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} T(t) dt$
- \longrightarrow algebraic (Ohm-like) decrease of the average transmission:

$$\overline{T} \simeq \frac{1}{1 + L/L_0}$$

T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P.S., PRA 72, 063621 (2005)

Transmission with finite interaction

Transmission with finite interaction

Crossover at weak interaction

 \rightarrow correlated with crossover from quasi-stationary to time-dependent scattering at $L = L^*$

T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P.S., PRA 72, 063621 (2005)

Crossover at weak interaction

T. Paul, P.S., P. Leboeuf, and N. Pavloff, PRL 98, 210602 (2007)

Transport of condensates through 2D disorder

 \rightarrow measure angle-resolved flux of backscattered atoms

Weak localization in two-dimensional disorder

Constructive interference between reflected paths and their time-reversed counterparts

Weak localization in two-dimensional disorder

Constructive interference between reflected paths and their time-reversed counterparts

→ enhanced coherent backscattering of laser light from disordered media

M. P. Van Albada and A. Lagendijk, PRL 55, 2692 (1985)

P.-E. Wolf and G. Maret, PRL 55, 2696 (1985)

 \rightarrow magnetoresistance in disordered 2D metals

Transport of condensates through 2D disorder

periodic boundary conditions

Transport of condensates through 2D disorder

periodic boundary conditions

BEC

Stationary scattering state of the condensate

Stationary scattering state of the condensate

decomposition of reflected wave into transverse eigenmodes \rightarrow angle-resolved backscattered current (time-of-flight image)

— inverted cone in presence of finite interaction: crossover from constructive to destructive interference

Comparison with analytical diagrammatic theory

 \rightarrow based on: T. Wellens and B. Grémaud, PRL 100, 033902 (2008)

— broad peak for stronger interaction: regime of permanently time-dependent scattering

Conclusion

Interaction strongly affects the localization properties of propagating condensates in disorder potentials:

- Transport through 1D disorder potentials:
 - crossover from exponential (Anderson-type) to algebraic decrease of the transmission
 - correlated with appearance of time-dependent scattering

T. Paul et al., PRA 72, 063621 (2005); PRL 98, 210602 (2007)

- Transport through 2D disorder potentials:
 - coherent backscattering peak inverted in presence of weak interaction

M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P.S., arXiv:0804.3723 (PRL, in press)

The team

Tobias Paul Michael Hartung Timo Hartmann Klaus Richter

Collaborations with

- Patricio Leboeuf and Nicolas Pavloff (LPTMS, Orsay)
- Thomas Wellens (Freiburg) and Cord Müller (Bayreuth)
- Dominique Delande and Benoît Grémaud (LKB, Paris)