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Cascades of energy through
different length scales.
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Turbulence in many forms

In addition to familiar vortex turbulence in fluids, turbulence can
also occur in systems of waves, e.g. –

Magnetic turbulence in interstellar gases.

Shock waves in the solar wind.

Sound waves in oceanic waveguides.

Capillary waves on ocean surface.

Phonon turbulence in solids.

Second sound in He II...
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Wave turbulence

Wave turbulence arises in systems of strongly interacting
nonlinear waves.

It is similar to vortex turbulence in fluids in that –

There is a flow of energy across the length scales –
conventionally, from the scale of the driving towards
smaller and smaller scales.

At small enough scales dissipation (due to e.g. viscosity)
becomes important and terminates the cascade.

It is believed that rogue waves on the ocean arise through
nonlinear wave interactions...
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Need for models

In practice, it is difficult to test the theory of wave
turbulence through studies of natural events (e.g. on
ocean, in interstellar media).

So a laboratory test-bed is needed, where parameters can
be controlled and adjusted.

It turns out that the properties of He II make it an ideal
model system.

McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4He



Introduction
Modelling wave turbulence

Experiments & results
Discussion

Need for models
Second sound in He II

Outline

1 Introduction
Motivation

2 Modelling wave turbulence
Need for models
Second sound in He II

3 Experiments & results
Experimental set-up
Energy cascades
Transients & dynamics

4 Discussion
Wider implications
Conclusion

McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4He



Introduction
Modelling wave turbulence

Experiments & results
Discussion

Need for models
Second sound in He II

Sound modes in He II
Two sound modes in bulk He II –

First sound is a pressure-density wave,
with in-phase motion of the normal and
superfluid components, and phase
velocity

u1 =

√

(

∂P
∂ρ

)

σ
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Sound modes in He II
Two sound modes in bulk He II –

First sound is a pressure-density wave,
with in-phase motion of the normal and
superfluid components, and phase
velocity

u1 =

√

(

∂P
∂ρ

)

σ

Second sound is an
entropy-temperature wave, with
anti-phase motion of the two
components, and phase velocity

u2 =

√

ρsσ2

ρn

(

∂T
∂σ

)

ρ
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Nonlinear coefficient for second sound

For finite temperature
excursions δT , 2nd
sound velocity is –

u2 = u20(1 + αδT )

where the nonlinear
coefficient

α =
∂

∂T
ln

(

u3
20

C
T

)

Datapoints: experiments, Dessler & Fairbank (1956).
Curve: theory, I M Khalatnikov (1952)
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Nonlinear coefficient for second sound

For finite temperature
excursions δT , 2nd
sound velocity is –

u2 = u20(1 + αδT )

where the nonlinear
coefficient

α =
∂

∂T
ln

(

u3
20

C
T

)

Note –

α → −∞ as T → Tλ

α changes sign at
T = 1.88 K

Datapoints: experiments, Dessler & Fairbank (1956).
Curve: theory, I M Khalatnikov (1952)
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Advantages of second sound for modelling

So second sound offers many advantages as a model system
for studying wave turbulence –

Nonlinear coefficient α can be made very large.

Also, α can be “tuned” by adjustment of T to be either

Positive, or
Negative, or
Zero.

The small velocity (20 m s−1) gives good time resolution
and convenient experimental dimensions.

It is easy to apply a variety of different signals to control the
second sound generator.
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Sketch of experimental arrangement

Create 2nd sound
standing wave with
heater.

Detect it with a
bolometer.

Sinewave of ω on
heater
⇒ 2nd sound at 2ω in
He II.

But any waveform
can be applied.
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Construction of cell
Aspect ratio of actual cell
was different –

Length of quartz spacer
– 70 mm

Inner diameter – 15 mm

Endplates parallel to
better that 1:104

Thin film heater

Thin film Sn-Cu
bolometer

Bolometer sensitivity –
2.6 V K−1

Q ∼ 1000 − 3000
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Data recording

Experimental procedure –

Drive heater from sinewave generator (0.1–100 kHz).

Second sound wave amplitude δT ∼ 0.05–5.0 mK.

Corresponding Mach number

M = αδT ∼ 10−4 – 10−2.

And acoustic Reynolds number

Re =
αu20 (∂δT/∂x)

γω
∼ αQδT

can be adjusted in range ∼1–100.

Record time series from bolometer (up to 106 points) and
use FFT to compute power spectrum.
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Power spectra of 2nd sound standing waves

Driving on 31st resonance,
fd = 3130 Hz.

Heat flux W was –

(a) 5.5 mW cm−2

(b) 22 mW cm−2

Dashed-line in (b) is Af ∝ f 3/2.

Inset: amplitude at driving
frequency v. heat flux.

Arrows show viscous cut-off
frequency.

Kolmogorov-like direct energy
cascade in (b).
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Numerical theory

Calculations for 4
different driving force
amplitudes Fd –

△ 0.01
⋄ 0.05
◦ 0.1
� 0.3

Dashed line is Af ∝ f−1.

Inset: standing wave
amplitude at driving
frequency for linear
(dashed) and nonlinear
(full curve) waves.

Very similar to experiments!

McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4He



Introduction
Modelling wave turbulence

Experiments & results
Discussion

Experimental set-up
Energy cascades
Transients & dynamics

Viscous cut-off frequency

Viscous cut-off
frequencies as function
of standing wave
amplitude.

Two temperatures:
1.77 K (lower) and
2.08 K (upper).

Driving on 31st (filled
symbols) or 32nd

resonance.

Dashed lines are by
numerical calculation.
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Evolution of power spectrum with drive frequency

T = 2.08 K (negative
nonlinearity),
W = 10 mW cm−2.

Driving near 96th
resonance: 9530.8 Hz
(top); 9532.4 (middle);
9535.2 (bottom).

Arrows –
Green: driving
frequency
Blue: first harmonic
Red: region of
subharmonic
generation
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Evolution of power spectrum with drive amplitude
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Evolution of power spectrum with drive amplitude
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An inverse energy cascade

The experimental results show that, for the right conditions of
wave amplitude and detuning –

Wave energy flows to larger length scales.

The onset of this inverse cascade is associated with an
instability against formation of subharmonics.

Onset is accompanied by a decrease in the energy of the
regular cascade.

Wave energy then gets dissipated at low frequencies –
presumably due to the processes that reduce Q (normal
fluid drag on the chamber walls?) at low frequencies.

The onset of the inverse cascade sometimes involves
hysteresis and metastability.
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Conditions for onset instability and inverse cascade

Calculated heat flux W for onset of
instability (full line) compared with
experiment (data points) for
different dimensionless detunings

∆ =
ωd − ωn

ωn
Bars indicate hysteretic width.
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Conditions for onset instability and inverse cascade

Calculated heat flux W for onset of
instability (full line) compared with
experiment (data points) for
different dimensionless detunings

∆ =
ωd − ωn

ωn
Bars indicate hysteretic width.

Bifurcation diagram (inset)

Yellow ⇒ instability

White ⇒ stability

Orange line, soft instability

Blue lines, hard instability

Green points, critical points
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Power spectrum after development of instability

Power spectrum of
standing waves after
onset of instability
and inverse cascade.

Green arrow: driving
frequency ωd .

Inset: corresponding
waveform, arrow
shows driving period.
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Energy can flow both ways

Under the right conditions,
energy in a turbulent acoustic
system can flow towards the
low frequency spectral
domain.

Inverse energy cascades are
are also known in 2-D fluid
flows.

So the Kolmogorov picture,
although correct for most of
the time, is incomplete.

"conven−

Lo
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E ω

cut−off

Energy
pumping

scale

viscous

E  = constω ωm

Log ω
Direct"Inverse"

energy
cascade

(Kolmogorov)
energy cascade
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tional"
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Effect of an additional low-frequency perturbation

Driving on the 40th

resonance, ωd1.

Note subharmonic at
ωd1/2.
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Effect of an additional low-frequency perturbation

Driving on the 40th

resonance, ωd1.

Note subharmonic at
ωd1/2.

Now add a small
perturbation on the 9th

resonance, ωd2...
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Effect of an additional low-frequency perturbation

Driving on the 40th

resonance, ωd1.

Note subharmonic at
ωd1/2.

Now add a small
perturbation on the 9th

resonance, ωd2...

Result is combination
frequencies (cf. Stokes and
anti-Stokes), and a
dramatic fall at ωd1/2.

Also, a reduction of the
inertial interval (cf. H2).
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Time evolution of inverse cascade

A cornucopia of interesting
transient effects, e.g.

Driving near 51st

resonance, starting at
t = 0.

Amplitudes of different
low-frequency peaks
plotted v. time t .

Inverse cascade takes a
long time to establish:
10–30 s (cf ∼1 s for
direct cascade).
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Evolution of acoustic turbulence
Switch on
drive at t = 0.

Near 96th

resonance,
W=42 mW cm−2,
T =2.08 K.

Direct
cascade
appears first.

Inverse builds
up slowly.

Ultimately,
nearly
continuous.
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Calculated evolution of inverse cascade
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Calculated evolution of inverse cascade
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Steady state of inverse cascade

Numerical calculation
shows travelling waves
within the resonator.
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Origins of rogue waves?

Dyachenko and Zakharov
suggest “modulation instability
of Stokes wave ⇒ freak wave”
(JETP Lett, 2005).

First experimental observation
of giant low-frequency waves,
as predicted.

NB oceanic surface involves
4-wave interactions, not
3-wave as here – but essential
physics very similar.
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Other systems displaying wave turbulence

Features of wave turbulence observed and studied in He II are
likely to appear for wave turbulence in other contexts, e.g. –

Liquid surfaces.

Bulk liquids and solids.

Astrophysics.

Plasma physics.

Most of these are far harder to control and study than He II –
which provides a beautiful laboratory-scale model.
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Conclusions I

He II is uniquely suited to modelling nonlinear waves.
The system of nonlinear second sound waves exhibits
turbulence – with a Kolmogorov-like energy cascade
towards high frequencies.
Energy balance is nonlocal in K -space.
The frequency scales of energy pumping and energy
dissipation are widely separated.
Addition of a second low frequency driving force leads to
combination frequencies between it and the main drive.
Amplitudes of second sound waves at high frequencies
decrease when the extra driving is added – probably due
to a redistribution of wave energy among newly excited
states at low-frequencies.
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Conclusions – II

Under some conditions, an inverse cascade can exist,
carrying energy towards frequencies lower than that at
which it is pumped into the system – in addition to the
conventional direct cascade.

It leads to a substantial increase in wave amplitude at low
frequency, corresponding to the formation of huge waves.

It is apparently due to a modulation instability of the
periodic wave – the same mechanism as that proposed to
account for the creation of the rogue waves on the ocean.
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