Magnetic domain patterns under an oscillating fields

Kazue Kudo

Ochadai Academic Production, Ochanomizu University

Collabolator: Katsuhiro Nakamura
(Osaka City University, Uzbek Academy of Sciences)

Domain Patterns

A wide variety of physical and chemical systems display domain patterns: for example,

- Thermal convection in fluids
- Chemical reaction systems
- Ferromagnetic thin films Ferrofluids
- Superconductors
- Biological media etc.

Magnetic Domain Patterns

Let us consider a ferromagnetic thin film like the schematic picture.

external field

- It has strong uniaxial magnetic anisotropy.
- Its easy axis is perpendicular to the film.
- Because of interactions between spins, up and down spins form clusters (domains).

Outline

1. Model and Method
for numerical simulations
2. Labyrinth \rightarrow Stripes \rightarrow Lattice
typical domain patterns under an oscillating field
3. Traveling pattern
equation for slow motion
4. Concentric circles, Spiral pattern some interesting patterns
5. Summary

Model \& Equation

Simple two-dimensional Ising-like model.
The Hamiltonian consists of 4 terms written by using
a scalar field $\phi(\boldsymbol{r})$.

1. uni-axial anisotropy:

$$
H_{\mathrm{ani}}=\alpha \int \mathrm{d} \boldsymbol{r}\left(-\frac{\phi(\boldsymbol{r})^{2}}{2}+\frac{\phi(\boldsymbol{r})^{4}}{4}\right)
$$

2. external field:

$$
H_{\mathrm{ex}}=-h(t) \int \mathrm{d} \boldsymbol{r} \phi(\boldsymbol{r})
$$

Model \& Equation

3. exchange interactions:

$$
H_{J}=\beta \int \mathrm{d} \boldsymbol{r} \frac{|\nabla \phi(\boldsymbol{r})|^{2}}{2}
$$

4. dipolar interactions:

$$
\begin{aligned}
& H_{\mathrm{di}}=\gamma \int \mathrm{d} \boldsymbol{r} \mathrm{~d} \boldsymbol{r}^{\prime} \phi(\boldsymbol{r}) \phi\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \quad \text { 亿••• } \boldsymbol{\downarrow} \\
& G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=1 /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{3} \text { at long distances. }
\end{aligned}
$$

Then the dynamical equation is described by

$$
\frac{\partial \phi(\boldsymbol{r})}{\partial t}=-\frac{\delta\left(H_{\mathrm{ani}}+H_{J}+H_{\mathrm{di}}+H_{\mathrm{ex}}\right)}{\delta \phi(\boldsymbol{r})}
$$

Equation in Fourier Space

The equation in Fourier space

$$
\frac{\partial \phi_{\boldsymbol{k}}}{\partial t}=\underbrace{\left(\alpha-\beta k^{2}-\gamma G_{\boldsymbol{k}}\right)}_{\eta_{\boldsymbol{k}}} \phi_{\boldsymbol{k}}+h(t) \delta_{\boldsymbol{k}, 0}-\left.\phi^{3}\right|_{\boldsymbol{k}}
$$

Here, $\left.\cdot\right|_{k}$ means the convolution sum, and

$$
\begin{gathered}
G_{\boldsymbol{k}}=a_{0}-a_{1} k, \quad(k=|\boldsymbol{k}|) \\
a_{0}=2 \pi \int_{d}^{\infty} r \mathrm{~d} r G(r)=2 \pi / d, \quad a_{1}=2 \pi
\end{gathered}
$$

d : cutoff length, which is fixed as $d=\pi / 2$ below.

Linear Growth Rate

Let us consider only linear terms in the equation:

$$
\frac{\partial \phi_{k}}{\partial t}=\eta_{k} \phi_{k}
$$

Linear Growth Rate

Let us consider only linear terms in the equation:

$$
\frac{\partial \phi_{k}}{\partial t}=\eta_{k} \phi_{k} \Rightarrow \phi_{k} \propto e^{\eta_{k} t}
$$

Linear Growth Rate

Let us consider only linear terms in the equation:
$\frac{\partial \phi_{\boldsymbol{k}}}{\partial t}=\eta_{\boldsymbol{k}} \phi_{\boldsymbol{k}} \Rightarrow \phi_{\boldsymbol{k}} \propto e^{\eta_{k} t} \Rightarrow\left\{\begin{array}{cc}\phi_{\boldsymbol{k}} \text { decays } \text { for } \eta_{k}<0 \\ \phi_{\boldsymbol{k}} \text { grows for } \eta_{\boldsymbol{k}}>0\end{array}\right.$
(But the nonlinear term prevents ϕ_{k} 's growing too much.)

Linear Growth Rate

Let us consider only linear terms in the equation:

$$
\frac{\partial \phi_{\boldsymbol{k}}}{\partial t}=\eta_{\boldsymbol{k}} \phi_{\boldsymbol{k}} \Rightarrow \phi_{\boldsymbol{k}} \propto e^{\eta_{k} t} \Rightarrow\left\{\begin{array}{cc}
\phi_{\boldsymbol{k}} \text { decays } \text { for } \eta_{\boldsymbol{k}}<0 \\
\phi_{\boldsymbol{k}} \text { grows for } \eta_{\boldsymbol{k}}>0
\end{array}\right.
$$

(But the nonlinear term prevents ϕ_{k} 's growing too much.)

$$
\begin{aligned}
\eta_{k} & =-\left(\beta k^{2}-\gamma a_{1} k+\gamma a_{0}\right)+\alpha \\
& =-\beta(k-\underbrace{\frac{a_{1} \gamma}{2 \beta}}_{k_{0}})^{2}+\frac{a_{1}^{2} \gamma^{2}}{4 \beta}-\gamma a_{0}+\alpha
\end{aligned}
$$

The characteristic length of domain patterns
 should be $2 \pi / k_{0}$.

Here, we set $\beta=2.0, \gamma=2 / \pi \Rightarrow k_{0}=1$.

Experiments

Examples of experimentally observed domain patterns under oscillating fields

- The labyrinth structure changes into parallel-stripes when the field is not very
 strong.
- When the field amplitude is increased, a lattice structure appears.

[Courtesy of Prof. Mino (Okayama Univ.): Experiments in iron garnet films.]

Numerical Simulations

External field: $h(t)=h_{0} \sin \omega t ; \quad \omega=2 \pi \times 10^{-2}$

- h_{0} is not large; $h_{0}=0.72$. $(\alpha=2.0)$

- h_{0} is large; $h_{0}=1.15 .(\alpha=2.0)$

ω-dependence of Lattice Formation

The lattice structure depends on the frequency ω.

- $\omega=2 \pi \times 2 \times 10^{-2} \quad\left(\alpha=2.0, h_{0}=1.15\right)$

- $\omega=2 \pi \times 5 \times 10^{-2} \quad\left(\alpha=2.0, h_{0}=1.15\right)$

Traveling Pattern

The whole pattern moves much more slowly than the field frequency.

$$
\begin{gathered}
\alpha=2.0 \\
\omega=2 \pi \times 5 \times 10^{-2}
\end{gathered}
$$

Ex. 1: $h_{0}=0.80$
Ex. 2: $h_{0}=0.95$

Traveling Pattern

The whole pattern moves much more slowly than the field frequency.

Basic mechanism: drift bifurcation (parity-breaking bifurcation) [1,2] - a periodic pattern begins to drift when its second spatial harmonic is not damped strongly ($k-2 k$ interaction).

$$
\begin{gathered}
\alpha=2.0 \\
\omega=2 \pi \times 5 \times 10^{-2}
\end{gathered}
$$

Ex. 1: $h_{0}=0.80$
Ex. 2: $h_{0}=0.95$
[1] B.A. Malomed \& M.I. Tribelsky, Physica 14D (1984) 67.
[2] P. Coullet et.al., Phys. Rev. Lett. 63 (1989) 1954; S. Fauve et.al., Phys. Rev. Lett. 65 (1990) 385.

Dynamical Equation for Slow Motion

The patterns travel very slowly compared with the time scale of the field frequency.

> How shall we analyze the traveling pattern theoretically?

Dynamical Equation for Slow Motion

The patterns travel very slowly compared with the time scale of the field frequency.

How shall we analyze the traveling pattern theoretically?

The dynamics under a rapidly oscillating field can be separated into a rapidly oscillating part and a slowly varying part.

- Kapitza's inverted pendulum [3]
[3] Landau \& Lifshitz, Mechanics (Pergamon, Oxford, 1960).

Kapitza's Inverted Pendulum

When a rapidly oscillating force is applied to a pendulum, the unstable stationary point can turn to a stable point.

Kapitza's Inverted Pendulum

When a rapidly oscillating force is applied to a pendulum, the unstable stationary point can turn to a stable point.

The equation of motion is

$$
m \ddot{x}=-\frac{\mathrm{d} U}{\mathrm{~d} x}+f
$$

f : a force oscillating rapidly (frequency: ω).
Let us separate $x(t)$ into a slowly varying part $X(t)=$ \bar{x} and a small rapidly oscillating part $\xi(t)$:

$$
x(t)=X(t)+\xi(t) .
$$

Effective Potential

Expanding in powers of ξ as far as the first order terms, we obtain

$$
\begin{equation*}
m \ddot{X}+m \ddot{\xi}=-\frac{\mathrm{d} U}{\mathrm{~d} x}-\xi \frac{\mathrm{d}^{2} U}{\mathrm{~d} x^{2}}+f(X, t)+\xi \frac{\partial f}{\partial X} \tag{*}
\end{equation*}
$$

For the oscillating terms,

$$
m \ddot{\xi}=f(X, t) \quad \longrightarrow \quad \xi=-f / m \omega^{2}
$$

We average Eq. $(*)$ with respect to time:

$$
m \ddot{X}=-\frac{\mathrm{d} U}{\mathrm{~d} X}+\overline{\xi \frac{\partial f}{\partial X}}=-\frac{\mathrm{d} U}{\mathrm{~d} X}-\frac{1}{m \omega^{2}} \overline{f \frac{\partial f}{\partial X}}
$$

We may rewrite it as

$$
m \ddot{X}=-\frac{\mathrm{d} U_{\mathrm{eff}}}{\mathrm{~d} X} ; \quad U_{\mathrm{eff}}=U+\frac{\overline{f^{2}}}{2 m \omega^{2}}
$$

Equation for Fast Motion

The original equation:
$\frac{\partial \phi(\boldsymbol{r})}{\partial t}=\alpha\left[\phi(\boldsymbol{r})-\phi(\boldsymbol{r})^{3}\right]+\beta \nabla^{2} \phi(\boldsymbol{r})-\gamma \int \mathrm{d} \boldsymbol{r}^{\prime} \phi\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)+h(t)$
Assumption: $\quad \phi(\boldsymbol{r}, t)=\Phi(\boldsymbol{r}, t)+\phi_{0}(t)$
$\Phi(\boldsymbol{r}, t)$: slowly varying term (space-dependent)
$\phi_{0}(t)$: rapidly oscillating term (space-independent)

Equation for Fast Motion

The original equation:
$\frac{\partial \phi(\boldsymbol{r})}{\partial t}=\alpha\left[\phi(\boldsymbol{r})-\phi(\boldsymbol{r})^{3}\right]+\beta \nabla^{2} \phi(\boldsymbol{r})-\gamma \int \mathrm{d} \boldsymbol{r}^{\prime} \phi\left(\boldsymbol{r}^{\prime}\right) G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)+h(t)$
Assumption: $\quad \phi(\boldsymbol{r}, t)=\Phi(\boldsymbol{r}, t)+\phi_{0}(t)$
$\Phi(\boldsymbol{r}, t)$: slowly varying term (space-dependent) $\phi_{0}(t)$: rapidly oscillating term (space-independent)

The rapidly oscillating part:

$$
\dot{\phi}_{0}=\alpha\left(\phi_{0}-\phi_{0}^{3}\right)-\gamma \phi_{0} \int \mathrm{~d} \boldsymbol{r}^{\prime} G\left(\boldsymbol{r}^{\prime}, 0\right)+h_{0} \sin \omega t
$$

$\longrightarrow \phi_{0}=\rho_{0} \sin (\omega t+\delta) ; \quad \rho_{0}$ and δ can be enumerated.

Approximation Methods

We propose two approximation methods to obtain the equation for slow motion [4].

1. The rapidly oscillating part is averaged out (on the basis of Kapitza's idea).
\Longrightarrow Time-averaged model
2. The delay of the response to the oscillating field is considered (instead of taking a time average). \Longrightarrow Phase-shifted model
[4] K. Kudo \& K. Nakamura, Phys. Rev. E 76, 036201 (2007).

Equation for Slow Motion

Dynamical equation for the slowly varying part:

1. Time-averaged model

$$
\begin{array}{r}
\frac{\partial \Phi(\boldsymbol{r})}{\partial t}=\alpha\left(\Phi(\boldsymbol{r})-\Phi(\boldsymbol{r})^{3}\right)+\beta \nabla^{2} \Phi(\boldsymbol{r})-\gamma \int \\
\mathrm{d} \boldsymbol{r}^{\prime} G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \\
+\frac{3}{2} \alpha \rho_{0}^{2} \Phi(\boldsymbol{r})
\end{array}
$$

2. Phase-shifted model

$$
\begin{aligned}
\frac{\partial \Phi(\boldsymbol{r})}{\partial t}= & \alpha\left(\Phi(\boldsymbol{r})-\Phi(\boldsymbol{r})^{3}\right)+\beta \nabla^{2} \Phi(\boldsymbol{r})-\gamma \int \mathrm{d} \boldsymbol{r}^{\prime} G\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \\
& -\alpha \Phi(\boldsymbol{r})\left(\Phi(\boldsymbol{r})^{2}+3 \Phi(\boldsymbol{r}) \rho_{0} \sin \delta+3 \rho_{0}^{2} \sin ^{2} \delta\right)+C \\
C= & \eta_{0} \rho_{0} \sin \delta-\alpha \rho_{0}^{3} \sin ^{3} \delta-\omega \rho_{0} \cos \delta
\end{aligned}
$$

How to Discuss a Traveling Pattern

1. We consider a parallel-stripe-type solution including second harmonics:

$$
\begin{aligned}
& \Phi(\boldsymbol{r}, t)=A_{0}(t)+A_{1}(t) \sin (k x+b(t)) \\
& \quad+A_{21}(t) \cos [2(k x+b(t))]+A_{22}(t) \sin [2(k x+b(t))]
\end{aligned}
$$

How to Discuss a Traveling Pattern

1. We consider a parallel-stripe-type solution including second harmonics:

$$
\begin{aligned}
& \Phi(\boldsymbol{r}, t)=A_{0}(t)+A_{1}(t) \sin (k x+b(t)) \\
& \quad+A_{21}(t) \cos [2(k x+b(t))]+A_{22}(t) \sin [2(k x+b(t))]
\end{aligned}
$$

2. Substituting the above $\Phi(\boldsymbol{r}, t)$ into the equation for slow motion, we obtain the equation for A_{0}, A_{1}, A_{21}, A_{22} and b.

How to Discuss a Traveling Pattern

1. We consider a parallel-stripe-type solution including second harmonics:

$$
\begin{aligned}
& \Phi(\boldsymbol{r}, t)=A_{0}(t)+A_{1}(t) \sin (k x+b(t)) \\
& \quad+A_{21}(t) \cos [2(k x+b(t))]+A_{22}(t) \sin [2(k x+b(t))]
\end{aligned}
$$

2. Substituting the above $\Phi(\boldsymbol{r}, t)$ into the equation for slow motion, we obtain the equation for A_{0}, A_{1}, A_{21}, A_{22} and b.
3. Finding stationary points (SPs), we examine the linear stabilities at the SPs. If $\dot{b} \neq 0$ at a stable SP, the pattern travels.

How to Discuss a Traveling Pattern

1. We consider a parallel-stripe-type solution including second harmonics:

$$
\begin{aligned}
& \Phi(\boldsymbol{r}, t)=A_{0}(t)+A_{1}(t) \sin (k x+b(t)) \\
& \quad+A_{21}(t) \cos [2(k x+b(t))]+A_{22}(t) \sin [2(k x+b(t))]
\end{aligned}
$$

2. Substituting the above $\Phi(\boldsymbol{r}, t)$ into the equation for slow motion, we obtain the equation for A_{0}, A_{1}, A_{21}, A_{22} and b.
3. Finding stationary points (SPs), we examine the linear stabilities at the SPs. If $\dot{b} \neq 0$ at a stable SP, the pattern travels.
4. The pattern can also travel if $\dot{b}=0$ at an unstable SP.

Is a Traveling Pattern Possible?

1. Time-averaged model - impossible

$$
\dot{b}=-3 \alpha A_{0} A_{22}
$$

There are only SPs with $A_{0}=A_{21}=A_{22}=0$, and they are always stable along A_{0}-axis. But we can estimate the max h_{0} to observe a non-uniform pattern.
2. Phase-shifted model - possible

$$
\dot{b}=-3 \alpha\left(A_{0}+\rho_{0} \sin \delta\right) A_{22}
$$

There are SPs where $A_{0}+\rho_{0} \sin \delta \neq 0$ but $A_{22}=0$, and they can be unstable along A_{22} in some region of h_{0}.

Concentric Circles

Concentric circles can appear in some cases.

- The field is very strong and the frequency is very high.
- (Assume) a strong defect at the center - The spin at the center is always up.

Diagram

Above the upper red line: homogeneous pattern except for the vicinity of center.

Below the lower red line: maze or lattice patterns

Between the upper and lower red lines - Concentric circles appear.

The theoretical line above which no pattern but a homogeneous pattern appears is obtained from the time-averaged model.

Spiral Pattern under a particular field

Numerical simulations show interesting patterns under a time-periodic and spatially inhomogeneous field.
Here, we redefine the magnetic field as $h(\boldsymbol{r}) h_{0} \sin \omega t$, and

$$
(1,2,2)
$$

$$
h(\boldsymbol{r})=\left\{\begin{array}{cl}
b\left(x^{2}+y^{2}\right) / R^{2}+(1-b) & \text { when } x^{2}+y^{2}<R^{2} \\
0 & \text { when } x^{2}+y^{2}>R^{2}
\end{array}\right.
$$

Spiral Pattern under a particular field

Numerical simulations show interesting patterns under a time-periodic and spatially inhomogeneous field.
Here, we redefine the magnetic field as $h(\boldsymbol{r}) h_{0} \sin \omega t$, and

Summary

- Under oscillating fields, a labyrinth structure changes into a parallel-stripe or lattice structure depending on the field strength and frequency.
- In some cases, we can see traveling patterns, which move very slowly compared with the time scale of the field frequency.
- Two methods were proposed to study the effects of the oscillating filed.
- Phase-shifted model explains the existence of the traveling pattern.
- Time-averaged model explains the existence of the threshold of the homogeneous pattern.

